7th Annual International CMP Conference

Tuning Hydroxylamine Slurries for Copper Barrier Polishing for (SiLKTM) Low-k Integration

Lily Yao, Bob Small, KZ Kadowaki, EKC Technology, Inc. Ketan Itchaporia and Micheal Simmons Dow Chemical, Inc. October 10, 2002

> EKC == CMP It doesn't get any planar than that.sm

EKC Technology, Inc.

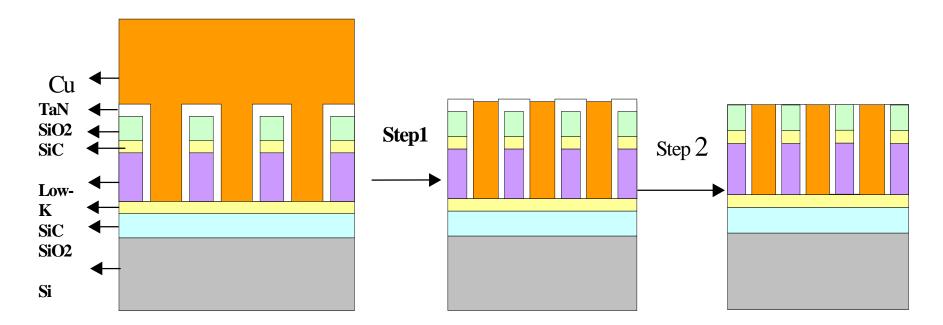
ENABLING TECHNOLOGY | COMMITTED TO QUALITY

AGENDA

- Introduction
 * Current Cu/SiLK integration
 - * Cu/SiLK CMP process
 - * Nitrogen-based slurry
- Experimental Set-up * Polisher, pads, measurement equipment, wafers
- Results *Cu-II barrier slurry (hydroxylamine/silica-based) applications with a. High Selectivity

b. Low/Non Selectivity

on Cu/SiLK blanket and patterned wafers


* Copper and SiLK surface rms, FTIR, electrical and adhesion data after CMP

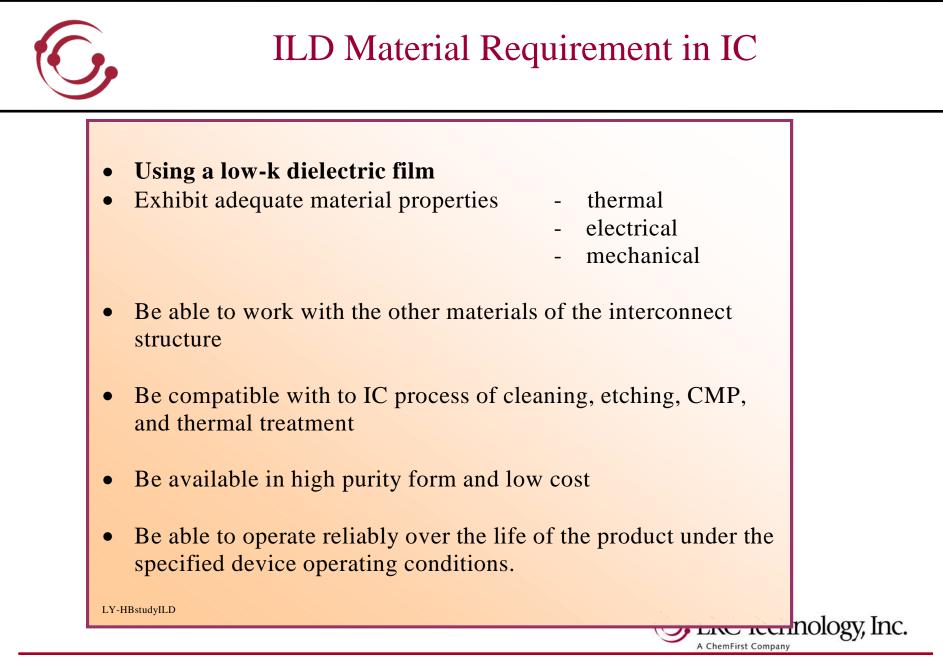
Conclusion

© 2002 EKC Technology, Inc.

Step 1: Polishing off Cu film and stop at barrier layer

Step 2: Polishing off barrier (Ta/TaN) film and stop at ILD layer

General Technical Requirements for Cu CMP

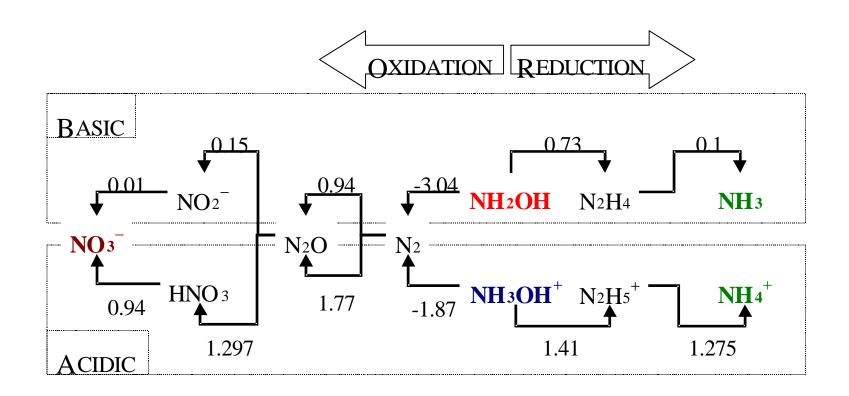

Roadmap for advanced Cu developments

	0.18 µm	0.15 µm	0.13 µm (2001)	0.1 µm (20	οοз) 0.07 μm
Dishing	500 Å	350 Å	250 Å	180 Å	120 Å
(100 um pad)					
Erosion	700 Å	500 Å	350 Å	200 Å	150 Å
(90% density)					
Dielectric loss	300 Å	250 Å	200 Å	150 Å	100 Å
WIWNU (1s)	4%	<3%	<2%	<2%	<2%
WTWNU (1s)	4%	<3%	<2.5%	<2%	<1%
LPD defects	<15 >0.2 µ	m <20 >0.16	μm <30 >0.12 μ	m <50 >0.0	08 µm <100 >0.05 µm
RR Step 1	>5000 Å/mi	n@5PSI	>5000 Å/min@	2 PSI >	∙5000 Å/min@ <0.5PSI
RR Step 2	>500 Å/min	@5PSI	>500 Å/min@:	2PSI >	500 Å/min@ <0.5PSI
				G, EH	KC Technology, Inc.

© 2002 EKC Technology, Inc.

CMPUG OCT. 2002

A ChemFirst Company



SiLK Dielectric Properties

	SiLK	V7	V8	V9
ĸ	2.65	2.35	2.20	2.10
D _{avg} (nm)	NA	25	16	< 9
Modulus (GPa @ 1 um)	3.6	2.8	2.7	2.8
Hardness (GPa @ 1 um)	0.27	0.17	0.16	0.15
СТЕ	62	62	62	~ 62
Toughness / Adhesion (Mpa-m ^{0.5})	> 0.35	> 0.35	> 0.35	> 0.35
Process Temperature (^O C)	400 – 450	430	430	400
Chemistry	SiLK	SiLK	SiLK	SiLK

Hydroxylamine Reduction Potentials & Reaction Paths

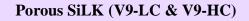
Reference: Dr. Srini Raghavan "Copper Removal in Hydroxylamine Based Slurries" 7th International Symposium

EKC Current Hydroxylamine-Based Slurries for Copper CMP

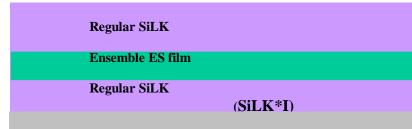
	Oxidizer	Abrasive	Application
Cu Phase-I	Hydroxylamine Based	Al_2O_3	Removal Cu layer
Cu Phase-II	Hydroxylamine Based Hydroxylamine	Colloidal Silica (Supply A) Colloidal Silica	Removal TaN with a high selectivity Removal Cu, TaN, TEOS
	Based Hydroxylamine Based	(Supply A & B) Abrasive free	at a low selectivity Removal TaN with a high selectivity
Single Phase	Hydroxylamine Based	Al ₂ O ₃	Removal Cu, barrier and stop at ILD layer

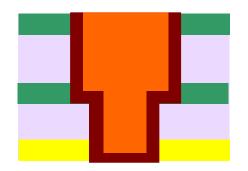
LY-HB-EKCproducts

Experimental Set-Up


* Polisher: IPEC 472;	
*Polishing Pads:	Rodel IC1000 k-grv/Suba IV and Politex polishing pads
* Measurement Equipment	nt: Cu and TaN Thickness: CDE ResMap 176
	TEOS Thickness: KLA-Tencor 650
	SiLK Thickness: KLA-Tencor 650 & Gaertner Ellipsometry
	SiLK surface chemical changer: BioRad FT-IR spectrometer Cu Surface roughness: Digital Instrument AFP200
	Cu Dishing & Erosion: KLA-Tencor P2 & DI AFP
*Slurries: EKC	Cu Phase-I with Alumina and oxidizer,
EKC	Cu Phase-II with Silica Abrasives and oxidizers (A to G)
	n EP copper, TaN, TEOS and SiLK: p-SiLK (includingV9) I (regular) SiLK*I (Ensemble)
* Cu Patterned Wafer: 200	mm Sematech 931, 831, 854 Pattern

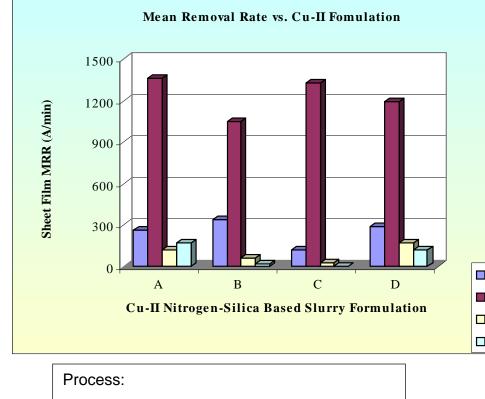
Sematech 800 pattern - CMP2 (Cu/SiLK)





SiLK Blanket Wafer Types

Regular SiLK (SiLK-I)



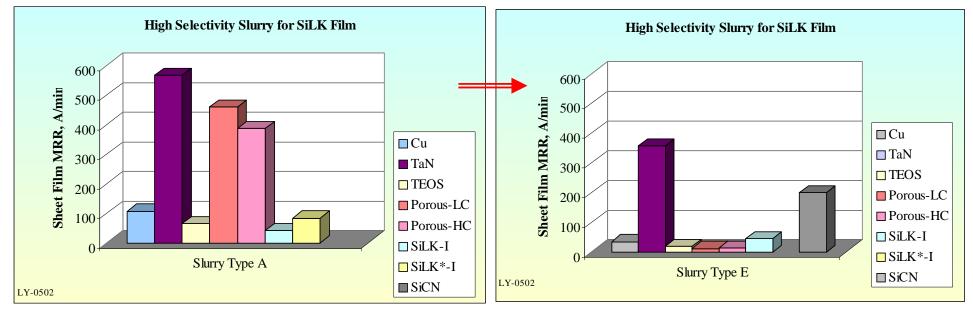
SiLK+Ensemble Integrated Stack

Silica Based Slurry for High Barrier Selectivity

IPEC 472 Polisher / Politex Embossed Pad

3 psi polishing pressure, 50 rpm platen speed

70 rpm carrier speed, 200 ml/min slurry flow with no conditioning in between wafers


Results:

- Selectivity of Cu:TaN:SiLK = 1: 3-11: <1
- TaN removal rate is related to Cu-II oxidizer concentration as expected.
- Reducing either the oxidizer or abrasive will reduce SiLK removal rate.
- Post CMP Rms of Cu and SiLK was 5-10 Å.

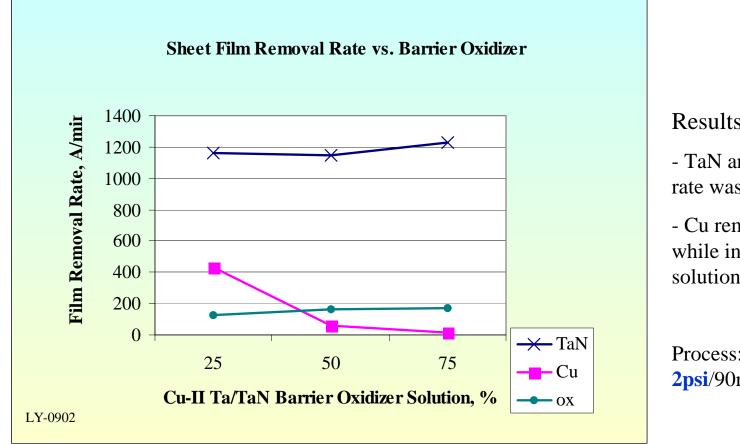
		Slurry Formulation				P Rms (A)
Cu	Slurry	Oxidizer	Silica Solids	Abrasive Type	Cu	SiLK
■ T aN	А	50%	5%		7	5
	В	20%	5%	Abra-I	10	7
□SiLK	С	50%	1%		9	6
	D	50%	5%	Abra-II	7	5

Silica Based Slurry for High Selectivity Application

Target: Lower SiLK Film MRR

* Original high selectivity slurry (Type A, pH 4) shows a higher porous SiLK MRR

* Slurry Type E (**pH 8**) reduced porous SiLK MRR efficiently.

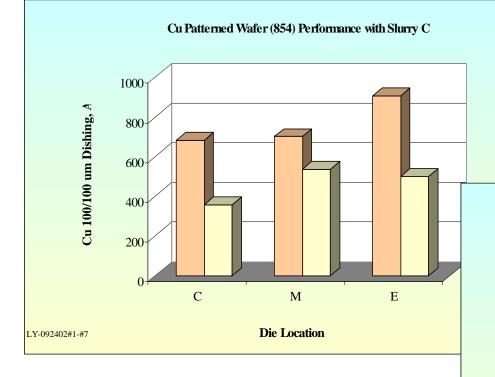

Process Set up: IPEC 472 Polisher / Politex Embossed Pad
Process: 2 psi polishing pressure, 70 rpm platen speed,75 rpm carrier speed,
200 ml/min slurry flow.

© 2002 EKC Technology, Inc.

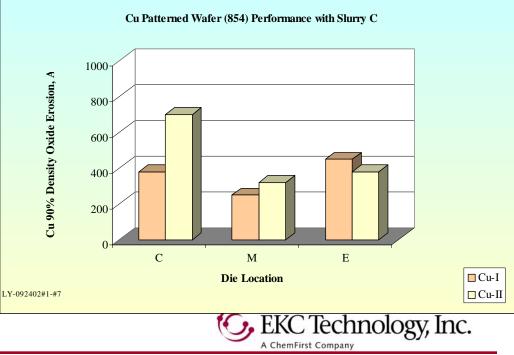
High Selectivity: Blanket Film Application (Politex pad with Slurry C)

Results:

- TaN and TEOS removal rate was no change.

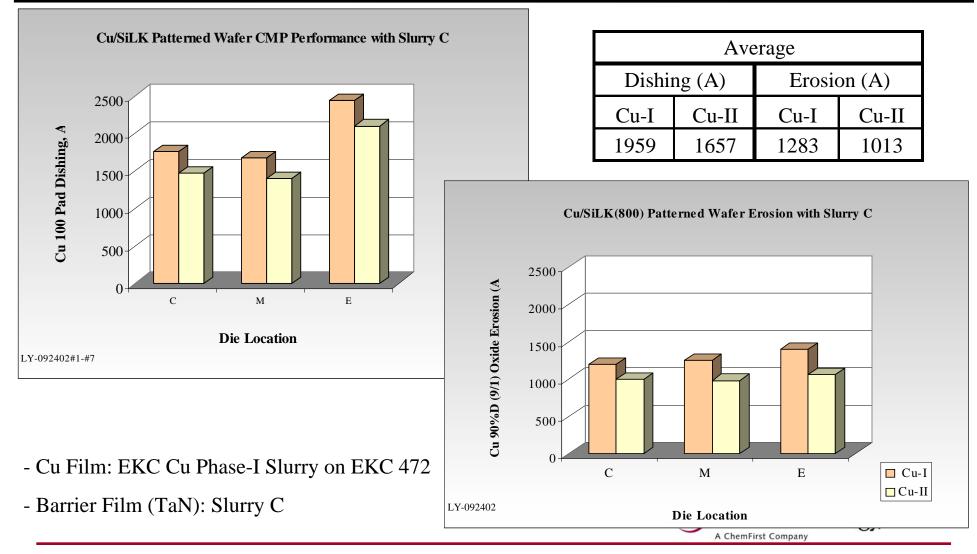

- Cu removal rate reduced while increasing oxidizer solution %

Process: 2psi/90rpmts/95rpmcs/200sf

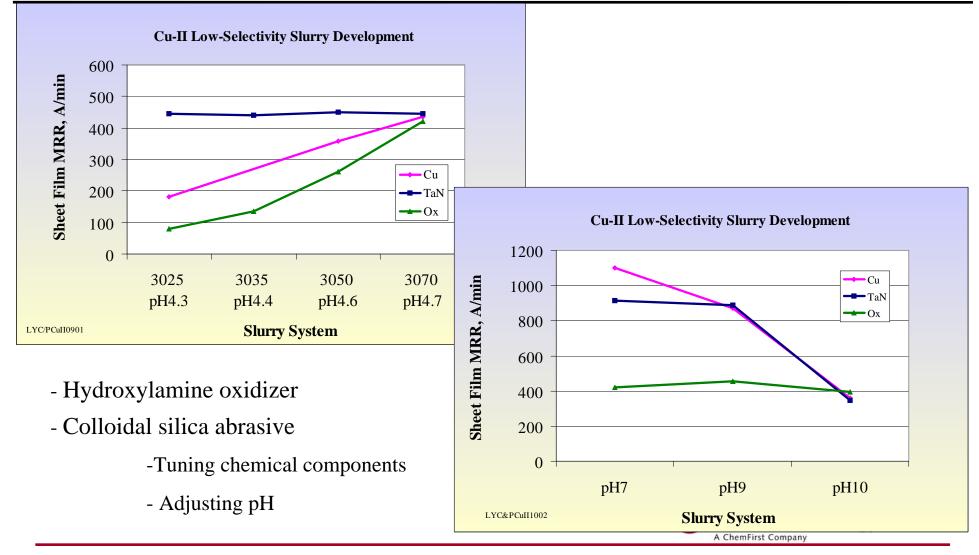


C,

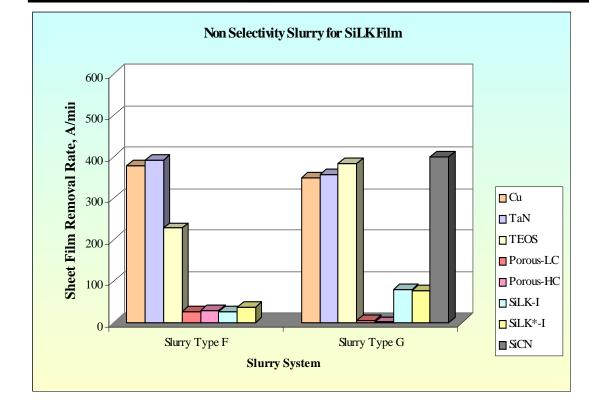
High Selectivity: Cu Patterned Wafer (854) Application (Politex pad with Slurry C)


Average				
Dishi	ng (A)	Erosion (A)		
Cu-I Cu-II		Cu-I	Cu-II	
764	465	360	467	

- First step Cu patterned wafer was polished on OEM tool
- Barrier was polished on EKC IPEC 472


© 2002 EKC Technology, Inc.

High Selectivity: Cu/SiLK Patterned Wafer (800) Application (Politex pad with Slurry C)


© 2002 EKC Technology, Inc.

Low Selectivity Barrier Slurry for Cu CMP: Effect of Concentration and pH

© 2002 EKC Technology, Inc.

Silica Based Slurry for Low Barrier Selectivity

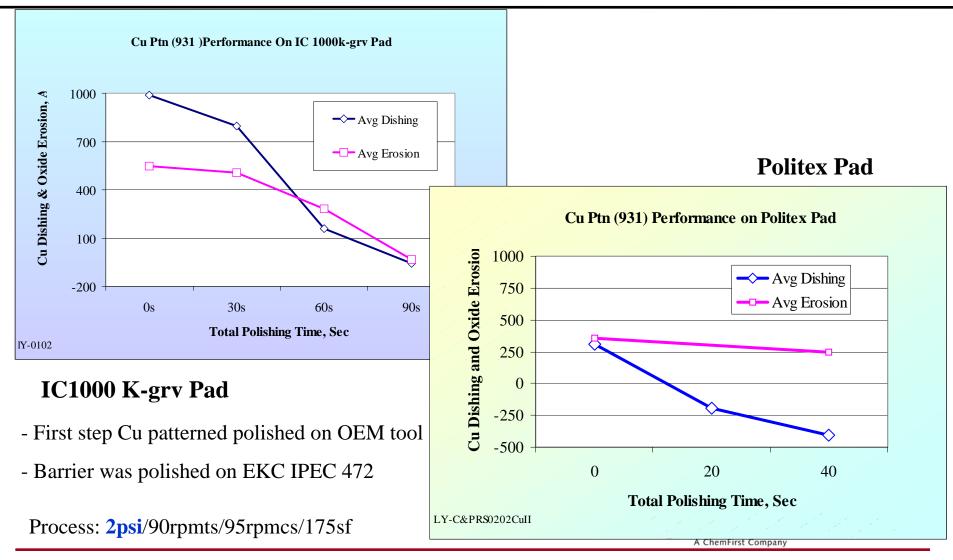
Results:

Low Selectivity slurry (Type C and D) showed similar TaN MRR to Cu and Oxide.

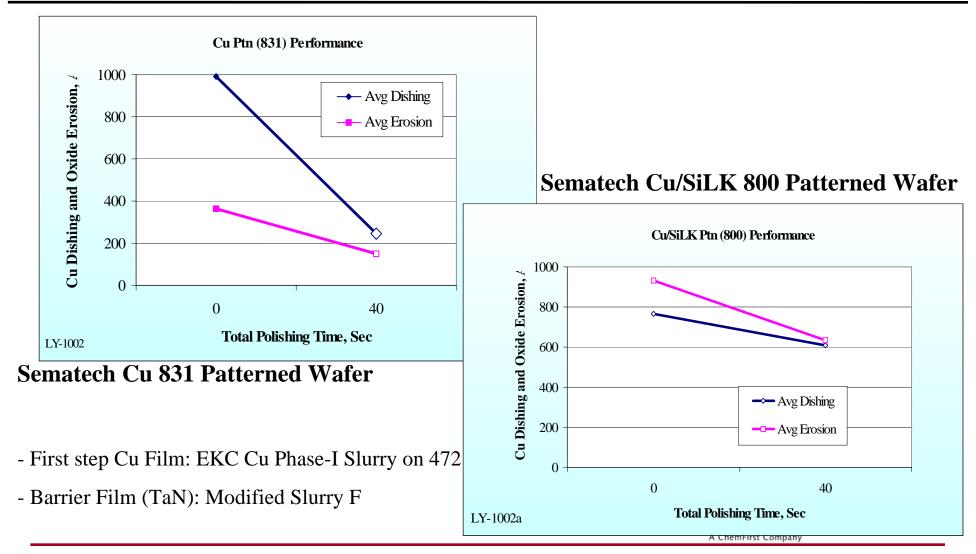
They also showed a good control for SiLK porous film as well as regular SiLK film.

SiCN MRR is similar to oxide

Process Set up: IPEC 472 Polisher / Politex Embossed Pad

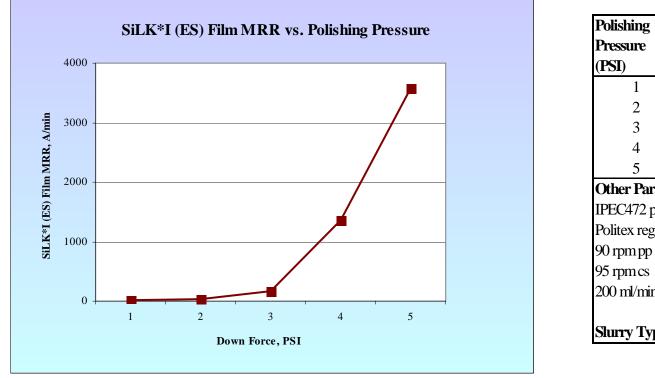

Process: 2 psi polishing pressure, 70 rpm platen speed

75 rpm carrier speed, 200 ml/min slurry flow


CMPUG OCT. 2002

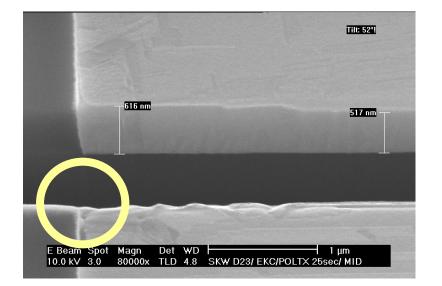
Low Selectivity: Cu Patterned Wafer (931) Application (Different Pads with Slurry F)

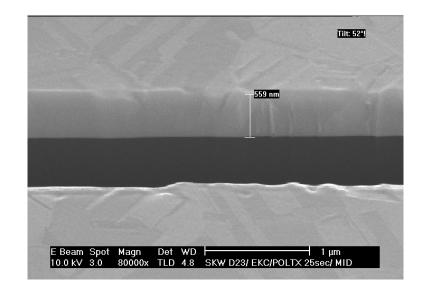
© 2002 EKC Technology, Inc.


Low Selectivity: Cu Patterned Wafer (831&800) Application (Politex Pads with Slurry F)

© 2002 EKC Technology, Inc.

SiLK*I (Ensemble) Film MRR vs. Polishing Pressure




Polishing	Removal	SiLK*I (ES)			
Pressure	Rate	Rem NU			
(PSI)	(A/min)	%			
1	15	n/a			
2	40	n/a			
3	174				
4	1367	15.8			
5	3576	6.5			
Other Parame	ters				
IPEC472 polisl	ner				
Politex reg pad					
90 rpm pp					
95 rpm cs					
200 ml/min sf					
Slurry Type F					

No delamination of the films seen at any polishing pressure

Cross Section of 100-µm Cu Lines after Ta Removal

FIB cross section shows some topography across the 100 um Cu lines after Politex pad

CMPUG OCT. 2002

Sheet Film Properties after CMP

Slurry	Surface	rms (A)	Adhesion (Mpa-m ^{0.5})		FTIR	
	Cu	SiLK	SiLK	SiLK	P-SiLK	SiCN
А	9.5	6.5	0.45 <u>+</u> 0.02	Pass	Pass	
В				Pass		
С	7.5	7.0		Pass		
D	7.0	5.8		Pass		
Е			0.43 <u>+</u> 0.03	Pass	Pass	Pass
F	8.0	6.5	0.42 <u>+</u> 0.02	Pass	Pass	
G			0.45 <u>+</u> 0.03	Pass	Pass	Pass

LY-C&PLowkSiLKproperties2002

Cu pre rms > 30 A, SiLK pre rms = 6 A

SiLK toughness adhesion should > 0.35 Mpa-m^{0.5}

Dielectric Data	Slurry A	Slurry E
Average k value	2.51	2.37
Flootropic Doto (ova)		
Electronic Date (avg)		
Breakdown voltage@ J=1e-5 A/cm ²	3.27	3.63
Leakage current at 0.5MV/cm =	3.35E-09	1.09E-09
Leakage current at 1.0MV/cm =	8.54E-09	2.28E-09

LY-C&PLowkSiLKproperties2002

- Breakdown voltage and leakage current looks good for slurry E
- There was a change in low-k value for slurry A
- Leakage current and breakdown voltage for slurry A are different than slurry E.

Nitrogen-Based Slurry Development for Copper/Low-k (SiLKTM) Integration

Conclusion:

* Hydroxylamine-based slurry is effective for the Cu/SiLK CMP processing.

- * With silica abrasive, the slurry can be designed for either high selectivity or low selectivity of Cu/TaN/SiLK integration.
- * No delaminating of SiLK films.
- * SiLK surface rms and chemical composition were the same as pre-CMP.
- * Film removal uniformity and wafer profile are within the spec.
- * The new nitrogen-based slurries have the potential to reduce the COO.

Acknowledgements

We would like to thank:

Dow Chemical Don Frye

EKC Technology Don Frey Philippe Chelle

