The Removal of Micro and Nanoscale Particulate Defects

A. A. Busnaina* and J. Park**

*W. L. Smith Professor and Director
NSF Center for Nano and Microcontamination Control www.cmc.neu.edu
and the Nanomanufacturing Research Institute www.nano.neu.edu
Northeastern University, Boston, MA 02115-5000

**Electronic Materials laboratory
Hanyang University, Ansan, South Korea
The First International Surface Cleaning Workshop

Hosted by the NSF Center for Nano and Microcontamination Control at Northeastern University and the University of Arizona Announces

25 Presentations, 2 Panels and 2 Tutorials

Location: Northeastern University Boston Campus, November 12-13, 2002
Website: http://www.cmc.neu.edu/surfacecleaning.html
Research Focus at the NSF IUCRC Center for Micro and Nanoscale Contamination Control

- Fundamentals of surface cleaning and preparation.
- Particle adhesion and removal mechanisms (backside wafer contamination).
- Development and fabrication of in situ micro sensors technology (MEMs based micro gas analyzer).
- Particle generation, transport, and deposition during wafer processing and handling.
- Contamination in thin film deposition processes (LPCVD, Sputtering, ion implant, etc.)
- Reduction of chemical use through the use cryogenic aerosols, supercritical fluids, ozone or dilute chemistries.
- Reduction of water use through increased cleaning and rinse efficiency.
OUTLINE

- Particle Adhesion
- Hydrodynamic and Brush Cleaning
- Removal Of Nano and Microscale Particles Using Megasonics
Particle Contact Area

Based on the Maugis-Pollok, plastic deformation model

![Graph showing the relationship between particle contact area and particle diameter](image)

- **PSL particle on SiO₂**
- **SiO₂ particle on SiO₂**
- PSL deformation in 95% RH
- PSL deformation in 40% RH after 7 days
- PSL deformation in 40% RH after 3 days

Note: The graph illustrates the contact radius ratio to particle radius as a function of particle diameter.
RESULTS

Measurements of Adhesion Forces

Diagram:
- **A** (approach)
- **B** (jump in)
- **C** (elastic modulus)
- **D** (jump out)
- **E** (separation)

Graph:
- **Distance** on the horizontal axis.
- **Force** on the vertical axis.
- **Set Point** on the horizontal axis.
- **Total tracking force**
- **Adhesion force**
- **A**, **B**, **C**, **D**, **E**

Northeastern University

NSF Center for Microcontamination Control
Silica Particle on AFM Tip

DLVO Interaction Force Between Particle and Various Wafers
Measured Interaction Force Using AFM Between Particle and Various Wafers

<table>
<thead>
<tr>
<th>Interaction Force (nN)</th>
<th>pH11 Slurry</th>
<th>pH7 Slurry</th>
<th>pH3 Slurry</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Particle Contamination on Various Wafers After Polishing

pH 11

pH 7

pH 3

Cu TaN TEO SiLK

Northeastern University

NSF Center for Microcontamination Control
Particle Contamination on Various Wafers After Polishing

pH 11

Cu

TaN

TEO

SiLK

pH 7

pH 3
Rolling

Hubbe evaluated the torque balance on a spherical particle in contact with the surface. When large deformation (a/R>0.1) is considered, the torque balance equation can be described as:

\[
(F_{ad} - F_L) a = (1.4 R - \alpha) F_D
\]

\[
RM = \frac{Removal \ moment}{Adhesion \ resisting \ moment}
\]

\[
RM = \frac{F_D(1.399R - \delta)}{F_a \cdot a}
\]

When RM >1, most particles are removed.
Removal Percentage vs. Moment Ratio
Colloidal Silica (0.3-0.7 micron) Removal Experiments
Contact Brush Cleaning Dynamics

- Non-Contact
- Partial-Contact
- Full-Contact

Brush

Contact Brush Cleaning Dynamics

NSF Center for Microcontamination Control
Contact Area and Adhesion Force during the Particle Engulfment

- Contact Area (um²)
 - 0.1 um particle, Contact Area to Wafer
 - 0.1 um particle, Contact Area to Brush
 - 0.5 um particle, Contact Area to Wafer
 - 0.5 um particle, Contact Area to Brush
 - 1 um particle, Contact Area to Wafer
 - 1 um particle, Contact Area to Brush

- Adhesion Force (N)
 - 0.1 um particle, Adhesion Force to Wafer (N)
 - 0.1 um particle, Adhesion Force to Brush (N)
 - 0.5 um particle, Adhesion Force to Wafer (N)
 - 0.5 um particle, Adhesion Force to Brush (N)
 - 1 um particle, Adhesion Force to Wafer (N)
 - 1 um particle, Adhesion Force to Brush (N)
RM in Contact Brush Cleaning

without double layer force

with double layer force

0.1 um particle
0.5 um particle
1 um particle

RM

Brush RPM

0 50 100 150 200

0 10^14 10^15 10^16 10^17 10^18

0 50 100 150 200

0 10^14 10^15 10^16 10^17 10^18

NSF Center for Microcontamination Control

Northeastern UNIVERSITY
Contact Cleaning of Polished TOX Wafers

- Defect # vs. PSI and time
- 20 PSI vs. 60 PSI
- 15 sec vs. 60 sec
- 45 rpm vs. 200 rpm
Acoustic Boundary Layer Thickness

- **Acoustic boundary layer thickness**: in water, $f=850\text{KHz}$, $\delta_{ac}=0.61\mu\text{m}$
 - $f=760\text{KHz}$, $\delta_{ac}=0.65\mu\text{m}$
 - $f=360\text{KHz}$, $\delta_{ac}=0.94\mu\text{m}$

- **The hydrodynamic boundary layer thickness**: in water, $u=4\text{m/s}$, at center of an 8” wafer, $\delta_H=2570\ \mu\text{m}$
Velocity Profile in a Boundary Layer

\[y = 0 \sim 2500 \text{ micron} \]

\[y = 0 \sim 10 \text{ micron} \]
ACOUSTIC STREAMING

Streaming Velocity vs. Acoustic Power

- $f = 760$ kHz
- $I = 0.77\, \text{W/cm}^2$
- $I = 1.55\, \text{W/cm}^2$
- $I = 2.33\, \text{W/cm}^2$
- $I = 3.10\, \text{W/cm}^2$
- $I = 3.88\, \text{W/cm}^2$
- $I = 4.65\, \text{W/cm}^2$
- $I = 5.43\, \text{W/cm}^2$
- $I = 6.20\, \text{W/cm}^2$
- $I = 6.97\, \text{W/cm}^2$
- $I = 7.75\, \text{W/cm}^2$

Streaming Velocity vs. Intensity

- $1\, \text{MHz}$
- $850\, \text{kHz}$
- $760\, \text{kHz}$
- $360\, \text{kHz}$
- Hard particles (silica) are easier to remove than soft particles (PSL).
- Particles larger than 20nm can be removed, but when electrical double layer force is considered, removal of 10 nm silica particle is possible.
- Hydrodynamic flow (at 4m/s) did not remove PSL particles smaller than 10 um.
Effects of Frequency on RM

DI water, Electrical double layer force is negligible

<table>
<thead>
<tr>
<th>Frequency (k Hz)</th>
<th>DI water, Electrical double layer force is negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{0}</td>
</tr>
<tr>
<td>10^{2}</td>
<td>10^{4}</td>
</tr>
</tbody>
</table>

SC-1, Electrical double layer force is repulsive force

<table>
<thead>
<tr>
<th>Frequency (k Hz)</th>
<th>SC-1, Electrical double layer force is repulsive force</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{0}</td>
</tr>
<tr>
<td>10^{2}</td>
<td>10^{4}</td>
</tr>
</tbody>
</table>

- The smaller the particles, the higher frequency acoustic flow is needed.
- Soft particles (PSL) are more difficult to remove than hard particle (silica), needing almost an order of magnitude higher frequency.
Complete removal of silica particles down to 100nm is achievable by using a single wafer megasonic cleaning with DI water only.

Single Megasonic Cleaning Process, Temp = 35°C
Removal Efficiency of Silica Particles $\geq 0.1 \mu m$
Complete removal of alumina particles down to 100nm is achievable by using a single wafer megasonic cleaning with DI water only.
Summary

- Adhesion-induced deformation can dramatically increase the total adhesion force.
- The removal efficiency of particles is strongly influenced by particle deformation.
- Magnitude of the force of adhesion between a particle and a substrate depends on the contact area.
- Hydrogen bonds and covalent bonds play an important role in adhesion force especially in the presence of moisture.
- In brush cleaning, contact between the particle and the brush is essential to the removal of submicron particles.
- In full contact mode, RM>>1 for a 0.1-micron particle is found for typical brush rotating speeds investigated.
- 100% removal using The brush Scrubber with DI water is achieved using wafer dipped in silica slurry.
- Intermediate brush pressure, speed and time gave the best overall particle removal efficiency.
Because of the thin acoustic boundary layer, high frequency acoustic streaming is essential to the removal of submicron and nano-size particles.

The acoustic boundary layer thickness decreases and the streaming velocity increases with increasing frequency thereby increasing the removal (drag) force.

The removal of nano-size particles (10-100 nm) can be accomplished using acoustic streaming at frequencies larger than 1.3 MHz.

If a repulsive electrical double layer force is utilized, removal of 10nm silica particles can be accomplished using frequencies above 800 kHz.

Removal forces (for the range of frequencies used),
- d>100nm, the acoustic flow drag force is dominant;
- 30nm<d<100nm, drag force and electrical double layer force are equivalent;
- d<30nm, electrical double layer force is dominant;

Soft particles (such as Polystyrene Latex PSL) are more difficult to remove than hard particle (silica), because of adhesion-induced deformation, needing almost an order of magnitude higher frequency.