Impact of Dissolved Oxygen on Metal Corrosion in Post-CMP Cleaning for Advanced Logic Structures

K. Mikhaylichenko

Sr. Director, Technology / CMP Business Unit

Co-authors: I. Deninger, Y. Chen, B. Brown, (Applied Materials)

E.M. McDonnell, C.E. Shipman, S.J. Roberts, and J.J. Keleher (Lewis University)

Research conducted under Sponsored Research Agreement with Lewis University

NCC AVS CMPUG Winter Symposium, December 4-5, 2024

Applied Materials | External Publication

Metal CMP cleaning challenges

Electrochemical analysis of cleaning conditions

Impact of dissolved oxygen on Cu corrosion current and surface oxygen content

Chemistry delivery | Oxygen reduction and oxygen uptake

Molybdenum CMP | Impact of dissolved oxygen

Metal Post-CMP Cleaning Challenges

Pourbaix diagram of Cu-H2O system

Published in "Handbook of Si Wafer Cleaning Technology", 3rd edition FIGURE 5.2-16 (A) Wafer scan map of copper circular scratches generated by brush scrubbing. (B) SEM images of the scratches

- Eliminate Cu corrosion
- Achieve high particle removal efficiency

- Prevent particle reattachment
- Avoid film damage

Unique characteristics of Cu metal present additional challenges for Post-CMP cleaning

Metal Post-CMP Cleaning | Wafer Center Corrosion Challenge

Excessive contact from the PVA brush can remove thin passivation Me_xO_y layer exposing underlying metal

Small wafer center area receives heavier scrubbing duty cycle, with standard brush rollers

Modification of roller brushes for reducing wafer center defects

Metal corrosion at wafer center observed in advanced nodes with shrinking device geometry

Common Corrosion Related Defects

SEM images collected on internal Applied Materials test structures

Co loss due to Cu/Co Galvanic Corrosion

EDX Element Mapping: Slit Divot Defect (Co Loss)

Cu Oxidation, Corrosion, Missing metal, Divot Defects, Cu redeposition and dendrite growth

Holistic Approach Needed to Address Metal Corrosion

Focus: Reduce oxidation during chemical treatment through dissolved oxygen control

Electrochemical Analysis of Cleaning Conditions

"Dynamic Cleaning" with Contact

"Static Cleaning" No Contact

Rotating working electrode in contact with PVA brush Force equivalent to 2 mm displacement, 50 rpm

Electromedical characteristics are used to compare corrosion probability for different cleaning conditions

Dissolved Oxygen Measurements

Most of experiments are conducted using benchtop setups

Cu | Dissolved Oxygen Impact on Corrosion Current

Reduced DO correlates to reduced corrosion current

Cu | Corrosion Current Reduction in Alkaline Chemistry

Environmental DO = 8 ppm (no treatment)

Reducing DO from 8ppm to <4ppm suppresses corrosion current.

Benefit from further reduction is limited

Cu | Surface Oxygen Content on Cu surface

After alkaline chemistry treatment with and without oxygen reduction

by SEM/EDS

Reduced DO in chemistry leads to reduction in oxygen content on treated surface

Dissolved Oxygen Reduction with Alkaline Chemistry Dispense from Jet Nozzle

Using N2 in jet nozzle significantly reduces DO in dispensed liquid

Presence of oxygen scavengers affects equilibrium DO concentration and DO drop under N2 purge

Oxygen Uptake in DIW under Static and Dynamic Conditions

Static

Dynamic

DIW flows out of Spray Bar

Even under dynamic conditions reoxygenation is slow

Oxygen Uptake in Cleaning Chemistry under Static and Dynamic Conditions

Similar to DIW, chemistry reoxygenation is slow

Molybdenum | Post CMP Cleaning Challenges

Problem Statement: Metal corrosion in small features for advanced logic structures

Adapted from "Molybdenum, Molybdenum Oxides, and their Electrochemistry", Viswanathan S. Saji and Chi-Woo Lee, ChemSusChem 2012, 5, 1146 - 1161

- » In neutral and alkaline media, passivation is not effective due to the formation of soluble species $HMoO_4^-$, MoO_4^- 2-.
- In acidic solutions the passive film consisted mainly of MoO₂ together with MoO₃.

Approach: Minimize corrosion by reducing dissolved oxygen (DO) in liquids in contact with surface

Mo | Corrosion Current Reduction with Reduced DO

Reduced DO correlates to reduced oxidation of Mo, especially in alkaline solutions DO reduction to less than 2 ppm is needed to minimize corrosion current.

Ambient DO = 6-8 ppm, chemistry dependednt

Mo | Surface Oxygen Content with DO Reduction

Reduced DO correlates to reduced and more consistent oxygen content on post CMP Mo surface

Ambient DO = 6-8 ppm, chemistry dependednt

Mo | DO Impact on Surface Roughness

Ambient Oxygen Content

De-Oxygenated Chemistry

Wafer	Sa (nm)	Sq(nm)
No Purge	3.42±0.43	4.25±0.48
Purge	2.76±0.15	3.46±0.26

Using de-oxygenated cleaning chemistry yields smoother Mo surface

Cu and Mo Corrosion Current with and without Dissolved Oxygen

Reduction in Dissolved Oxygen leads to drop in overall corrosion current for both Mo and Cu For alkaline chemistries, Mo has overall higher I_{Corr} compared to Cu In certain chemicals, Mo exhibits friction induced corrosion (Chem B)

Key Learnings and Conclusions

- Metal Post-CMP cleaning is challenging, as it requires high particle removal efficiency to be achieved with reduced mechanical force and chemical aggressiveness.
- Reducing dissolved oxygen content in the cleaning chemical is beneficial for elimination of surface corrosion.
- For both Cu and Mo, reduction in dissolved oxygen leads to decrease in the overall corrosion current I_{Corr} and minimizes oxidative half-reaction.
- N2 purge is effective in removing DO from cleaning chemicals.
- Oxygen uptake into the chemicals is slow on a time scale typical for post-CMP cleaning processes, even with chemistry being dispensed through a standard spray bar

Acknowledgement

 This work is a result of outstanding collaboration between Applied Materials CMP Business Unit and Lewis University Prof. J. Keleher Research Group. Thank you, Team!

