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Agenda
The Problem: CMP is Inherently Multivariate

Simplifying the System: Experimental Design

Significance and Correlation of Species to Polish Rates

Predicting Polish Rate with a Machine Learning Model

Future Work & Advancement
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The CMP Process & Current Challenges

Many parameters that all interact, making 1:1 modeling 

difficult. Development is primarily empirical.
Seo, J. A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical 
planarization. Journal of Materials Research 36, 235–257 (2021). https://doi.org/10.1557/s43578-020-00060-x
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Current CMP Development- High Throughput Experimentation

Choose Slurry

Run Wafer

Characterize

Make process changes based 

on previous/institutional 

knowledge, empirical data, gut 

instinct

*sometimes, you get it right the first time using onboard metrology

Target closer 

based on wafer 

run
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The Vision for CMP Development

Model

Run Wafer

Characterize

Feed data back to 

get better insights

Film Data Slurry Data

Do not need to start from zero when working on new films

Make changes based on 

model-based insight-agnostic 

of previous processing
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Can we develop such a model with AI? 

• It has never been easier to study 

interrelated variables using AI 

techniques

• Previous attempts at modeling 

utilized 20 or more descriptors and 

thousands of data points to predict 

polish rates- infeasible for R&D

• Select features of importance based 

on surface interactions and basic 

spectroscopy data

Can we develop a model in the low data regime?



Intel ConfidentialTechnology Research 7

Can We Use Noncontact Metrology to Predict Polish Rates?

Slurry Particle Size Material

X 30 SiO2

Y 30 “Low Silanol” SiO2 

2X 75 SiO2

Films Deposition Information

fCVD 1 fCVD- Thermal Cure

fCVD 2 fCVD- UV Cure

PECVD PECVD (SiH4+N2O)

HDP High Density Plasma (SiH4+O2)

Steam Treatment Conditions

No Process - NP

200 C (1 hr) + 500 C (1 hr)- 200/500

500 C (2 hr) - 500

700 C (2 hr) - 700

3 slurries x 4 films x 4 steam treatments= 48 

polish rates

Custom Blends 

from Fujimi

16 unique films
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ATR-FTIR MIR-FTIR ToF-SIMS

Water Contact Angles 

(WCA)

X-ray Photoelectron 

Spectroscopy (XPS)

Density 

Measurements

Characterization battery was completed on all wafers post growth, and on selected 

“interesting” coupons

Our Toolkit
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Experimental Design

12% abrasive 

concentrate, 

pH ~8

3% abrasive 

concentrate, 

pH 4

+ DI 

H2O+HNO3, 

1000 uL

2
 in

2 in
Blanket 

Oxide 

Deposition

Cleave 

Coupons

Polish 

Coupons

Measure using 

nondestructive 

techniques

Based on the collected data, we can identify some immediate trends on 

factors that affect polish rates
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Steam Annealing Decreases Polish Rates – With Notable Exceptions

No Process films for fCVD 1, fCVD 2, & PECVD show reduced polish rates 

with Particle Y while the rest show enhanced rates



The Role of Different Chemical 
Species in Films
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All 3 Particle Y Nonpolishing Films Show >1 at% N

A small amount of nitrogen causes large scale effects!



Intel ConfidentialTechnology Research 13

Why Does 1-3% Nitrogen Reduce Polish Rate With Particle Y?

O- OH OH O-O- O- OH O-

Attractive force between particle and 

surface, MRR increase

More generally abrasive action due to 

minimal electrostatic interactions on 

surface- repulsion and charge 

neutralization from NH3+

NH3+ O-O-

+

+

+

+

+
+

+

+ +

+

+

+

+
+

+

+

OH NH3+
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Nitrogen Content is Not Correlative to Polish Rates

X
Y

2
X
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FTIR Provides A More Direct Understanding of Anneal Effects

• In both fCVD films, the N and Si-H peak disappears after 

a steam anneal

• As the steam anneal gets more aggressive, the broad 

OH peak narrows and decreases

OH

NH
Si-H

fCVD 1
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FTIR –OH Area Is Not Independently Predictive of Polish Rates

X Y 2X
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Why does a higher anneal condition lead to a lower polish rate?

Contact angles show a clear trend- as the anneal gets more aggressive, 

hydrophobicity increases
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Density Data Further Reinforces WCA Findings

As the films are annealed, they also become denser- a result of hydrolysis into Si-O-Si
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Neither is Density Alone

Surprisingly, not that strongly correlated, but F-test suggests strong significance 

of the density in Slurry X (P<0.05) and Slurry 2X (P<0.05)

Y
X

2X
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Takeaways

• Particle Y enhances the polish rate for pure oxides

• Particle Y shows a negligible polish rate if films contain nitrogen 

(>1 at%)

• Nitrogen, oxygen and density are all related to polish rate 

(P<0.05) but are not 1:1 correlative



ML Modeling
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If Surface Interactions Are Key, Can We Use Surface Spectra As Predictors of 
Polish Rate?

FTIR

XPS

Mechanical

Model Polish Rate

PCA

WCA
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PCA Crash Course

• In non math terms, a PCA (“Principal Component Analysis”) finds the features in 

a dataset that maximize variance.

• “What features in this data make one different than another?”

• Component 1- maximizes variance, Component 2- 2nd most variance etc. 

• Putting together the components in some unique weight will rebuild all the data 

(almost). Each weight is known as a score. 

• This results in a lower-dimensional representation of data that still retains the 

most important patterns or structures.
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Modeling- FTIR MIR PCA

PCA analysis found impactful wavelengths, correctly identifying them as OH, NH and SiH 

peaks without deconvolution

Component 5- 2.6%

Component 4-5.8%

Component 3- 14.7%

Component 2- 19.2%

Component 1- 54.3%

OH: 3650 cm-1

NH: 3370 cm-1

SiH: 2176 cm-1
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Machine Learning Methods Crash Course

General Guidance: Stay as simple as you can (start at linear 

regression and work higher)

Lin, W., Chen, J.S., Chiang, M.F., & Hribar, M.R. (2020). 
Applications of Artificial Intelligence to Electronic Health 
Record Data in Ophthalmology. Translational Vision 

Science & Technology, 9.
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Random Forest Crash Course

Each “tree” independently results in a solution based on different 

features. The average of these is our final solution.

Álvaro Escribano, Dandan Wang, Mixed random forest, 

cointegration, and forecasting gasoline prices, 

International Journal of Forecasting, Volume 37, Issue 

4, 2021, Pages 1442-1462, ISSN 0169-2070, 

https://doi.org/10.1016/j.ijforecast.2020.12.008.
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XGBoost Modeling w/Spectra Alone

Train Dataset R2: 95.4%

Test Dataset R2: 87.4% 
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What about films it has never seen?
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Definitely some overfit, but appears to be a solid classifier
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XGBoost Modeling w/WCA Added

Train Dataset R2: 96.0%

Test Dataset R2: 85.7% 
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XGBoost Modeling w/WCA Added
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The Modeling Approach Used Is A Balance

• Fully built on nondestructive techniques, allowing for faster iterating

• An extremely successful classifier- will it polish or will it not polish? 

• Functions well as a regressor as well, with room for improvement

• The successful predictive use of only surface spectra supports the electrostatic 

interaction qualitative model

• Cannot capture extremes in polish rate (>40nm/min)- need to add more data 

points in the extremes

• Need to add more data on other moieties (carbon + nitrogen containing films) to 

build robustness

Strengths

Limitations



Intel ConfidentialTechnology Research 32

Conclusions
• This is the first successful modeling using noncontact metrology to 

predict oxide CMP polish rates (to our knowledge) 

• AI Models are powerful tools to deconvolve interacting variables in CMP with 

immediate use cases in R&D and pathfinding

• No single spectroscopic variable appears to be predictive of polish rate 

changes in a vacuum

• A 2-step model is proposed, where the first step is electrostatic interaction with 

the surface, and the second is chemical binding to the surface followed by 

removal



33

Reference to research results, including comparisons to products, services or technology performance are estimates and do not imply availability. May contain information on products, services and technologies in development. Learn 
more at www.Intel.com/PerformanceIndex and www.Intel.com/ProcessInnovation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.



Intel ConfidentialTechnology Research 34

XGBoost Modeling w/WCA & Density Added

Train Dataset R2: 94.6%
Test Dataset R2: 80.1% 
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