

#### **Reducing CMP Process Mass Intensity**

sjbenner@confluense.com

### **Unprecedented Demand for Semiconductors - CMP**



#### NCAVS-CMPUG May 2024

Jense

'The Chip Industry Has a Problem With Its Giant Carbon Footprint'

Bloomberg, 2021-04-08

- The total mass of liquid input is 3487 kg/wafer including UPW and city water (not circulated PCW) and 210kg/wafer excluding water.
- Technology scaling continues to bring benefits in transistor density and higher speed. In parallel, for the assumptions made in this work, the PPACE analysis shows a significant increase in electricity (x3.46) and ultrapure water consumption (x2.3), and in greenhouse gas emissions (x2.5) per wafer from the 28nm to the 2nm node. "The Environmental Footprint of Logic CMPS Technologies", Imec, 12/20
- The higher number of CMP and wet steps led to an increase of UPW consumption from 6 l/cm2 at iN28 to 14 l/cm2 at iN3 in our analysis (Fig.14). "The Environmental Footprint of Logic CMPS Technologies". Imec, 12/20



From an [CMP] environmental sustainability point of view, reducing slurry consumption is more significant than saving electric energy Evaluation of environmental impacts during chemical mechanical polishing (CMP) for sustainable manufacturing, Hyunseop Lee\*, Sunjoon Park and Haedo Jeong, Journal of Mechanical Science and Technology 27 (2) (2013) 511~518



### **Estimating CMP Process Mass Intensity**



💋 sem r

#### THE SEMICONDUCTOR INDUSTRY – PART OF THE PROBLEM AND THE SOLUTION

#### **The Problem**

- Large semiconductor fabs can consume electricity at 100 MW / hour enough to power 50K houses
- A single fab can use up to 9 million gallons of water / day
- 70+ new fabs coming online over the next few years

#### **Enabling The Solutions**

- · Advancements in semiconductors are critical to enabling:
  - \* Industry 4.0 Smart Manufacturing improved efficiency, less waste
  - · Technologies that conserve energy and water and reduce carbon footprint

billion liters per year. The numbers at the right end of each country show the consumption per square centimeter of product. Various types of product are represented in the color key.

#### Water used by fabs



#### CMP Process Mass Intensity; 40% Fab Water is CMP <sup>1</sup>

- ((4.62 l/cm2 \* 700 cm2/wafer) + (0.3l slurry / wafer pass \* 41 wafer passes)) ÷ (41 layers/wafer \* (0.3 micron film removal / layer \* 0.00000579 kg/cm3\*\*) = PMI
- 3246 KG + 12.4 KG / (41 \* 0.00000012 ) = PMI

#### 3246 KG/ 0.00000502 KG = 647,257,000 :1 Mass input : Mass removed

1) Gordon C.C.YangInstitute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C.



### **Context - Opportunities**

- Although chemical mechanical planarization (CMP) is widely applied in integrated circuit fabrication, it is still a process of significant trial and error.
- Most systems aim to maintain a consistent global average of materials properties, concentrations, particle size distribution, and stability, throughout the delivery lifecycle, the polishing and cleaning operation cycles, and within the effluent/waste stream.
- Process mass intensity for CMP is estimated to be 650 1100 KT / gram of film removal. This measure could be readily compiled and used as a benchmark for new materials development and process intensity improvement.
- POU Infeed materials are 'oversupplied' to maintain interfacial chemistry 'global average'; 90% never touches wafer.
- CMP efficiency can be dramatically improved using flow chemistry principals



#### 'Global Average' Chemistry

Blend Formulation to Drain



NCAVS-CMPUG May 2024

#### **Limited improvement levers**





#### **Pad Residence** → **Source of material variation**

**Oversupply required to counteract process induced slip-stream variations** 



Average supstream residence time so seconds 90% of fresh slurry carried away by bow wave <sup>1</sup>
 70% of steady state mass fraction is 'spent' slurry <sup>3</sup>

1 Slurry Utilization Efficiency Studies in Chemical Mechanical PlanarizationAra Philipossian and Erin Mitchell

2 Investigating Slurry Transport beneath a Wafer during Chemical Mechanical Polishing Processes;Coppeta,J.,Rogers,C.,Racz,L., Philipossian,A.,Kaufman,F.B.

3 Muldowney; http://www.avsusergroups.org/cmpug\_pdfs/CMP2007\_4\_Lawing.pdf

lense

NCAVS-CMPUG May 2024

### FIX your inputs; variation IN = variation OUT



## Characteristic slip stream variation; 60 sec polish

| Dynamic State<br>variable     | Control                                           | Conventional<br>Equipment | SS11 Slipstream pH<br>12.00<br>10.00<br>8.00<br>Control 9.8<br>Process 7.0 – 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|---------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slurry Concentration<br>(pH)  | Incoming                                          | >50%                      | 6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00 |
| Conditioning Debris           | Rinse                                             | >4000% dia                | $\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $                                                                                                                                                                                                                                                                                                                            |
| Large Particle count<br>(>1µ) | Incoming                                          | >5x10 <sup>6</sup> #/ml   | LPCounts/ml > 1micron<br>100,000,000<br>1,000,000<br>10,000<br>10,000<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Temperature                   | Friction /<br>Chemical<br>reaction / Platen<br>HT | 0.3º-0.5º/sec             | 1       10       20       30       40       50       60         Polish Seconds         Conv Δ 6°C, avg 42.9C, σ 2.2C         PSM Cu CMP         Conv Δ 6°C, avg 42.9C, σ 2.2C         PSM Cu CMP         Temp impact         80         60       100         80       100         60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| çonFluens                     | 2                                                 |                           | 40<br>20<br>0<br>PSM Trailing Temperature<br>PSM Trailing minus leading Delta T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

NCAVS-CMPUG May 2024

## **Our Solution - Controlled Fluid Residence**

Vacuum extract spent slurry, products, debris, and rinse water in-situ to reduce  $\sigma$ 

### Reduce CMP PMI 24% .....

- Consumption savings are enabled by *controlling* slip stream properties



Variable Exhaust Attributes

Volume, Location, Timing, Routing

Efficient slurry replenishment
Localized high pressure rinse
Independent of Abrasive Downforce

Supports any conditioning abrasive

Effluent instrumentation for Al / analytics





.....Dramatic DD improvements are enabled by controlling the slurry 'quality' in 'slipstream'

# Findings: Rinse Water

- UPW is used in great quantities to rinse both tooling and wafers Pad Rinsing
  - 4 I/min / HPR nozzle, 6-8 nozzles per platen
  - 9-12 sec HPR per wafer-platen
  - Average: 20 l/wafer pass
  - **Ex-Situ Conditioning**
  - 4 I/min / HPR nozzle, 6-8 nozzles per platen
  - 9-12 sec HPR per platen
  - Average: 20 l/wafer pass

Typical total = 23 *liters pwp* 

- Localized Pad Cleaning
  - 0.2 l/min / HPR nozzle, 36 56 nozzles per platen
  - 9 sec total
  - Result: <u>4 liters pwp</u>



**Conventional UHPW Consumption, 23 liters pwp** Mean UHPW Saving opportunity 19 liters pwp

## **Findings: Slurry Utilization Efficiency**

Wafers / Film Type: Main Polish Slurry / Pad Type: Pad Conditioner End Effector: CMP Process Tool: 25KA TOX Ferro SRS 2092, Ceria / DOW IC1010 K TBW Grid Abrade for PSM 200mm Mirra running Titan II Heads

369 wafers were run with a test wafer placed after every 20 TOX dummies. All test wafers were run on the same head. Process was a customer Oxide POR polishing for 60 sec on Platen 1 with PSM Conditioner and 30 sec buff on platen 3. Platen 2 was not used. For baseline, PSM was used without Vacuum. The first data point is wafer #49 after 49 min of polish and 69 min of conditioning (20 min Cond Break in). \*\*Test wafers 389 and beyond were patterned test wafers for alternate interest, rather than TOX dummies.



# **Findings: Defectivity**

Wafers / Film Type: Novellus 40KA Peteos Slurry / Pad Type: DOW Klebosol 1501-50, Colloidal Silica IC-1010 Pad Conditioner: TBW Grid Abrade for PSM CMP Process Tool: 200mm Mirra running Titan II Heads

544 wafers were run with a test wafer placed after every 20 PeTeos dummies. All test wafers were run on the same head. Process was a customer Oxide POR polishing for 60 seconds on Platen 2 with PSM<sup>™</sup> Conditioner followed by 60 sec buff on platen 3 with water. Platen 1 was not used. For baseline, PSM<sup>™</sup> was used without Vacuum for first 100 wafers. The first data point is wafer #11 after 11 min of polish and 41 min of conditioning (30 min Cond Break in). A Control Set of test wafers were repeated at the end without the PSM<sup>™</sup>. Light Point Defects measured with SP1

Average Rate w/o PSM<sup>™</sup>: 3777 Å/Min Average Rate with PSM<sup>™</sup>: 4066 Å/Min

NCAVS-CMPUG May 2024

PSM Improvement of 7%



Non-uniformity (not shown) was stable and unchanged across the run which averaged 3.65 @ 3mm

## **Independent of Conditioner**

### Universally improved defect performance





# **PSM Summary**

- 647,257,000:1 PMI CMP has "disproportionate consumption" of high cost consumables, and excessive variation
- Confluense improves utilization and input variation.
  - 30% slurry reduction, increase utilization efficiency by removing spent materials
  - 40% rinse water reduction, addn'l savings via reduced post CMP cleaning burden
  - 70% reduction in defects, in-situ control of PSD, chemistry, convection coefficient (T), pad profile.
  - 10%+ throughput increase, in-situ conditioning, RR increase
- System can retrofit over 50% of existing polishers in the field. Extensible to ANY polisher.
- High ROI
- Enabler for kinetic inference, predictive analytics, continuous process improvement, materials simplification, CMP waste reduction / segregation / recycle



## **Call to action?**



#### UHP Water requirements have grown 2.5X between iN28nm to iN3nm (5.8 l/cm<sup>2</sup> $\rightarrow$ 14.5 l/cm<sup>2</sup>)<sub>1</sub>

| Customer      | Water Sustainability Initiatives                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|
| Intel (2030)  | Onsite water reclamation plants (>\$300MM)<br>Net water conservation of 60 billion gal                                      |
| TSMC (2030)   | Onsite water reclamation plants (>\$600MM)<br>Unit water consumption 30% reduction<br>>60% replacement with reclaimed water |
| Samsung       | Zero increase for Device Solutions (DS) water intake by 2030, Treat water to natural level quality by 2040                  |
| Micron (2030) | 75% water conservation                                                                                                      |



\*For standard iN3 Cu CMP

1. DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score (PPACE) Analysis for Logic Technologies: M. Garcia Bardon1, P. Wuytens1, L.-Å. Ragnarsson1, G. Mirabelli1, D. Jang1,

# Interesting or Imperative?

| Observed Savings opportunity<br>- 200mm POI testing<br>- Baseline comparisons, Non-optimzed | Saving per Wafer        | PMI Saving % |
|---------------------------------------------------------------------------------------------|-------------------------|--------------|
| 30% Slurry savings                                                                          | 4.2 Kg / wafer          | 0.1%         |
| 19 liters CMP Rinse water savings                                                           | 780 Kg/wafer            | 24%          |
| Reduced process defects                                                                     | ~1.5% die yield/wafer?? |              |
| 10% Cycle time reduction                                                                    | 0.2KW/pwp               |              |
| Totals                                                                                      | 784 KG/wafer            | 24%          |



