Environmentally Benign Chemical Mechanical Planarization Slurries Aided by Amino Acids

CMPUG Spring Symposium May 02, 2024

Hoang Tran Thi Thuy, Elizabeth J. Podlaha, and Jihoon Seo hottran@clarkson.edu

Department of Chemical and Biomolecular Engineering,

Clarkson University, Potsdam, New York, USA

Outline

- Introduction: Cu CMP Process and Challenges
- Cu & Co Corrosion-Polishing with Inhibitors
- Degradation Methodology of Wastewater
- Conclusions
- Future work

Outline

- Introduction: Cu CMP Process and Challenges
- Cu & Co Corrosion-Polishing with Inhibitors
- Degradation Methodology of Wastewater
- Conclusions
- Future work

1. Introduction to Cu CMP

Journal of Materials Research volume 36, pages235–257 (2021)

⁴

Cu/Co CMP Process and Challenges

0

5

BTA conc., mM

10

T. Nogami et al., IEEE International Interconnect Technology Conference, pp. 1–3 (2013). B.C. Peethala et al., J. Electrochem. Soc, 159(6), H582-H588, 2012

Concerns with Azoles (e.g., BTA)

Environment

- Azoles are poorly biodegradable during wastewater treatment
- Toxicity to plants, invertebrates, microorganisms
- In 2008, BTA was classified as emerging organic pollutants (EPs) by the United States Environmental Protection Agency

Need more benign CMP slurry!

<u>CMP Process</u>

• Removing BTA residue can be problematic

Involves Cu-N bonds

R.F. Roberts, *J. Electron. Spectrosc.* **4** 273 (1974). M. Finsgar, J. Milosev, *Corros. Sci.* **52** 2737 (2010).

 In the presence of cupric ions in the slurry BTA can precipitate as nanoparticles which are difficult to remove (although can be minimized by complexants)

Z.-Q. Shi, Y.-S. Liu, Q. Xiong, W-W. Cai, G.-G. Ying, *Sci.Total Environ.* **661**, 407 (2019) S. D. Richardson, Anal. Chem. 80, 4373 (2008) https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=307075

Cu & Co Corrosion Inhibitors

Corrosion inhibitor	Non-toxicity, Biodegradability	Reducing corrosion	Water-Solubility	Notes	References
Azoles N N H	Х	√	\checkmark	Non-biodegradability	S. D. Richardson, Anal. Chem. 80, 4373 (2008), (2)
Schiff bases	Х	\checkmark	✓	Require complicated synthesis method (R ₂ C=NR)	Y.N. Sudhakar,D. Krishna Bhat, in Biopolymer Electrolytes, 2018, <u>Ahmed A. Al-Amiery</u> et al. Scientific Reports (2022)
Amino acids R $H_2 N - C_{\alpha} - COOH$ H	Our focus ✓	\checkmark	\checkmark	Natural origin	Kohsuke_Hayamizu, Sustained Energy for Enhanced Human Functions and Activity, 2017
Polymer and biopolymer	√/X	\checkmark	Х	Require modifying structures, thick passivation	Mohammad Mobin et al., ACS Omega2017, 2, 3997–4008 Desai et al., 1986, Shokry et al., 1998
Self-assembled Monolayers C ₁₈ H ₃₇	Х	✓	\checkmark	Require highly ordered molecular assemblies	B.V. Appa Rao, M. Narsihma Reddy, Arabian Journal of Chemistry, 2014

Corrosion Inhibitors examined

Amino Acid are of interest due to:

- Highly soluble in CMP slurries
- More easily degradable with less toxicity

1. Electron donation capability at R (heteroatoms S>O>n-alkyl favoring chemisorption)

2. Charge at alkaline medium (pH 8): (Physisorption)

3. Chemical structure, chain length (physisorption):

Since different functional groups on the amino acids provide **different electron-donating abilities** that promote chemisorption, physisorption, would corrosion inhibition & polishing follow this trend?

Outline

Introduction: Cu CMP Process and Challenges

Cu & Co Corrosion-Polishing with Inhibitors

Degradation Methodology of Wastewater

Conclusions

• Future work

2. Cu/Co corrosion, galvanic corrosion

Evans Plot

Tafel curve for Cu and Co

 For metals, there is a driving force for Co corrosion in the presence of Cu

$$E_{Cu/Cu}^{0}^{2+} > E_{Co/Co}^{0}^{2+}$$
 (0.34 V > -0.28 V vs NHE)

But oxides have different equilibrium E⁰
E⁰_{Cu/Cu20} < E⁰_{Co(OH)2/Co304} (-0.02 V < +0.1 V vs NHE, pH 10)

Significant Co corrosion, galvanic corrosion of Co, $i_{gc} \sim 63$ μ A/cm², $i_{corr, Co} \sim 76 \mu$ A/cm², $i_{corr, cu} \sim 43 \mu$ A/cm², $\Delta E_{gc} \sim 40 \text{ mV}$

2. Cu/Co corrosion with inhibitors, pH 8

Electrolyte: 1wt % H₂O₂, 10 mM corrosion inhibitors (amino acids), 900 rpm, pH 8, RT.

Cu/Co corrosion with inhibitors, pH 8

Electrolyte: 1wt % H₂O₂, 10 mM corrosion inhibitors (amino acids), 900 rpm, pH 8, RT.

Methionine

Leucine

Glutamic acid

Determining Adsorption Energy

Adsorption Energy, ΔG_{ads}^0

	Ph Ch	ysisorption $-\Delta G^0_{ad}$ emisorption $-\Delta G^0_{ad}$		
		Cu	Со	
Leucine	K (L/mol)	76.8	No inhibition	
NH ₂ OH	$-\Delta G^0_{ads,25^{\circ}C}(\frac{kJ}{mol})$	20.5	with higher concentration	Largely physisorbed
Methionine	K (L/mol)	276.5	1092	
HO S-CH3	$-\Delta G^{0}_{ads,25^{\circ}C}(\frac{kJ}{mol})$	23.9	27.3	More chemisorbed ΔG _{ads} ,Co > ΔG _{ads} ,Cu

vs. BTA
$$-\Delta G_{ads,BTA/Cu}^{0} = 31 \frac{\text{kJ}}{\text{mol}}(*), -\Delta G_{ads,BTA/Co}^{0} = 29 \frac{\text{kJ}}{\text{mol}}(**)$$

$$|\Delta G^0_{ads of \ leucine, \ methionine}| < |\Delta G^0_{ads \ of \ BTA}|$$

Leucine & methionine may be easier to clean off the surface

(*) P. G. Fox, G. Lewis, and P. J. Boden, *Corros. Sci.* **19**, 457 (1979).

(**) D. Yin, et al. Colloids and Surfaces A 591 (2020) 124516

2. Cu-Co removal rate with variable AAs

Cu/Co removal rate with inhibitors (P= 2 psi)

Slurry: **1wt% Silica particles**, 1 wt % H₂O₂, 10mM corrosion inhibitors, pH 8

	No inhibitor	Methionine	Glutamic acid	Leucine	ВТА
Cu:Co:SiO ₂ RR selectivity	8:9:1	3:4:1	7:10:1	4.5:12:1	3:9:1

MRR with the amino acid inhibitors follow the same trend with the corrosion results with:

- Methionine having more comparable Cu:Co removal rates
- Leucine inhibiting Cu, but not Co

Cu species with H₂O₂, inhibitor at pH8

Aim to: Understand Cu species

Cu species observed by XPS Cu2p_{3/2}

AAs change the Cu surface oxides differently

Outline

- Introduction: Cu CMP Process and Challenges
- Cu & Co Corrosion-Polishing with Inhibitors
- Degradation Methodology of Wastewater
- Conclusions
- Future work

Concerns with Azoles (e.g., BTA)

Environment

- Azoles are poorly biodegradable during wastewater treatment
- Toxicity to plants, invertebrates, microorganisms
- In 2008, BTA was classified as emerging organic pollutants (EPs) by the United States Environmental Protection Agency

Z.-Q. Shi, Y.-S. Liu, Q. Xiong, W-W. Cai, G.-G. Ying, *Sci.Total Environ.* **661**, 407 (2019) S. D. Richardson, Anal. Chem. 80, 4373 (2008) https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=307075

Need more benign CMP slurry!

Can amino acids be easier to degrade after their use?

3. Degradation of amino acids and BTA

Fenton-based advanced oxidation process (AOP)

- $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + OH^-$
- Fe³⁺ regeneration to Fe²⁺ at the cathode: Fe³⁺ + e⁻ \rightarrow Fe²⁺
- Water oxidation at the anode: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- OH* + Organics \rightarrow CO₂ + H₂O + N₂ + (degraded by-products)
- Organic compounds in our case: amino acids and BTA

 $C_0 = 10 \text{ mM}$ Methionine, Leucine or BTA, at pH 2.5

 $C_t/C_0 = ?$, $E_{applied} = 2 V vs SCE$

Conclusions

(1) Increasing the electron-donating ability of the side chain (S>O>n-akyl, C=O withdrawing group) increases the corrosion inhibition:

(2) Cu 2p_{3/2}: Methionine treated is more Cu(0)/Cu(I) with better Cu corrosion resistance, leucine has similar Cu(0)/Cu(I)/Cu(II) with less Cu corrosion resistance and no Cu corrosion resistance with glutamic acid the surface has more Cu(OH)₂.

(3) The ΔG_{ads} values for leucine and methionine indicate weaker adsorption compared to BTA (possibly better for post-cleaning)

- (4) MRR follows similar trends consistent with the corrosion studies
- (5) There is no methionine, or leucine presence after t = 30min, but BTA presents even after t=30min.

The degraded products are found by ESI-MS.

(6) More methionine and leucine reacted than BTA, showing that it is more easily decomposed.

Acknowledgments

- Semiconductor Research Corporation grant (Task 3100.001) under the Global Research Collaboration Program
- Advisors

Prof. Jihoon Seo, Clarkson University

Prof. Elizabeth J. Podlaha-Murphy, Clarkson University

Clarkson CMP Group

Research

Corporation

Semiconductor

Merck KGaA Darmstadt, Germany

-Thank you for your attention-And question?