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INDRODUCTION 

Within-die non-uniformity (WiDNU) resulting from topography differences between features of varying 
length scales is among the most critical challenges in CMP. Quite often, the tolerance for WiDNU and 
WiWNU in topography and line height for advanced semiconductor chips such as embedded memories and 
stacked-FET is on the order of a few nm for some critical layers. Naturally, such nm-scale uniformity 
requirements along planar (x-y) as well as vertical (z- axis) directions would impose equally stringent defect 
tolerance because any surface discontinuity caused by defects such as scratches could translate to loss in 
yield and uniformity. The study here will demonstrate how CMP pads alone can reduce both WiD 
topography and defectivity. The underlying mechanisms involved will be discussed. 
 

BACKGROUND 
In semiconductor industry, the continuing drive towards shrinking geometry in advanced technology 

nodes imposes pressing challenges to all process technologies. For CMP, one of the most stringent 
performance requirements is the need to meet within-die uniformity in term of planarity and thickness 
across patterns of varying critical dimension.  
 

Within a die area of a few cm2, long range (i.e., 100m ~ 1000m) planarity is required to ensure 

uniformity across chiplets and repeating macros. Meanwhile, short range planarity (i.e., 0.1m ~ 1m) is 
critically needed to meet the electrical specs of macros and devices.  

Materials chemistry, surface morphology, and mechanical characteristics of CMP pads play crucial roles 
in removal rates, defectivity, and planarization efficiency. The usual practice in the industry is to apply “hard” 
pads for planarization. Besides the hardness of top pad itself, surface textures, the type of sub-pad (e.g., 
with different thickness and compliance) can modulate long range planarity. 

 
On the other hand, dishing and erosion within a macro leads to loss in short range planarity. In this case, 

the amount of topography difference within the macro is often smaller (~ a few nm) compared with that 
required for long range planarity (i.e., 100s of nm) in advanced tech node.  However, their impact  
on device performance can be significant, as illustrated in Fig. 1 in the case of Cu interconnects.  
 

 
Fig. 1: Rs delta between 1x and 60x Cu wires resulting from deficiency in short-range planarity. 

 
For FEOL oxide and STI CMP application, “hard pad” combined with ceria slurry is widely adopted to 

meet the planarity and selectivity requirements. In general, hard pads provide superior planarity but tend to 
generate more scratch defects. Additionally, ceria slurries are known to cause high polish scratches (PS) or 
even mechanical damage (MD) defects due to their morphology. Meanwhile, for BEOL Cu CMP, the use of 



 
 

 

 

poromeric “soft pads” with high pore volume is a standard practice for purpose of defect reduction. However, 
by nature, “soft pads” are more conformal to wafer surface topography, leading to loss in both long- and 
short-range planarity.  

 
In this study, results from CMP pad evaluation and selection for within-die planarity improvement as well 

as defect reduction will be presented. The balance and trade-off between planarity and defectivity with 
traditional PU pads will be discussed in the context of their physical and mechanical properties. Based on 
the result, the needs for new pads and the trend for CMP pad technology development will be deliberated 
and projected.  
 

EXPERIMENTAL 
All CMP experiments are conducted in a 300mm commercial polisher with 3 platens. Post cleaning 

process contains two-stage PVA brush scrubbing steps with a proprietary alkaline clean chemical, followed 
by IPA drying. For inter-level planarization (ILP), a 1-step timed polish process with silica slurry of pH ~ 9.5 
is utilized to planarize the low-k dielectric over device macros with various pitches and pattern density, as 
shown in Fig. 2.  
 

 
Fig. 2: ILP (left) and polish oxide stop on nitride (SON, right) CMP process schemes in the current study. 

 
For defectivity study, a ceria slurry of pH 5.0 is applied to polish oxide and stop on nitride (SON) for an 

advanced memory device. For blanket wafers, post SP3 defect scan is carried out at 40nm resolution. For 
patterned wafers, defect scan is operated at dark field mode, followed by SEM review and classification. 
 

RESULTS 
Two different pads, POR and Pad C were tested for ILP process to planarize the low-k dielectric over 

large macros with different pitches and pattern density for a particular memory device. After polishing to the 
target oxide thickness, AFM scan was performed on top of 2 different such macros and their traces are 

shown in Fig. 3. The scan length (x-axis) is on the order of hundreds of m while the topography (y-axis) is 
on the order of tens of nm. 
 

 
Fig. 3: AFM traces across Macros 1 & 2 on POR vs. Pad C. The topo on y-axis is adjusted to the same scale for 
comparison. 

 
It is apparent from Fig. 3 that Pad C leads to > 50% lower topography over 2 different macros, relative to 

POR. In an extended study, a variant of Pad C (i.e., Pad D) plus an additional macro (Macro 3) were 



 
 

 

 

included for further evaluation of planarization efficiency. The pattern density of Macro 3 is slightly higher 
than that of Macro 2 while the scan length remains the same. For Pads C and D, 3 timed polishes with 
different duration were conducted. Their resulting post thickness and topography from AFM traces are 
summarized in Fig. 4. Topography from POR pad polished to target thickness is included for comparison. 
 

 

The topography vs. ILD thickness plots in Fig. 4 indicate that, with POR pad, when ILD is already polished 
to target thickness, the measured topography across all 3 macros is still higher than the spec. On the other 
hand, both pads C and D afford lower than spec topography when remaining ILD thickness meets the target. 
Consequently, one can conclude that both pads C and D exhibit superior planarization efficiency than POR 
pad. A closer look at the plots reveals that, provided the same ILD thickness, pad C results in the least 
amount of topography difference among the 3 macros, followed by pad D and then POR. 

For defectivity study, a ceria slurry of pH 5.0 is applied to polish blanket oxide wafers and patterned SON 
wafers on two different pads, Pad X (POR) and Pad Y of about the same hardness and % porosity. For 
blanket wafers, post SP3 defect scan is carried out at 40nm resolution. For patterned wafers, post CMP 
defect scan is operated at dark field mode, followed by SEM review and defect classification. Wafer maps 
and defect density from both pads are presented in Fig. 5 for both blanket and patterned wafers. 

 

 

Fig. 5: (Left) Blanket oxide defect wafer maps; and (right) weighted total defect density (WTDD) of polish 
scratches (PS), gouge (GO), and mechanical damage (MD) on SON patterned wafers from pads X and Y. 

 
SEM pictures of PS, GO, and MD defects as referenced in Fig. 5 are displayed in Fig. 6. While all 3 types 

of defects fall into the general category of scratches, PS refers to short and shallow scratches, GO signifies 
an area of structure that is “gouged” out, and MD represents deep and heavy scratches spanning across 
multiple patterns. 

Fig. 4: Topography vs. remaining ILD thickness for Pads C (left) and D (right). POR pad at target ILD thickness is 
included for comparison. 



 
 

 

 

 
Fig. 6: SEM pictures of PS, GO, and MD defects on patterned wafers from Fig. 5. 

 
The defect results in Figs 5 and 6 clearly demonstrates significant scratch defect reduction by Pad Y 

compared with Pad X (POR) even though both pads share the same hardness.   
 
The above topography and defectivity studies illustrate that, without resorting to any new tooling, 

hardware, software algorithm, or even altering the incoming deposition process, CMP pads alone can 
modulate the topography and within-die uniformity to a large extent. Likewise, without changing slurries or 
clean chemical, CMP pads can reduce scratch defects remarkably. Pad surface characteristics are keys to 
the planarization and defectivity performance as will be discussed in the next session. 
 

DISCUSSION 
Fig. 7 captures how planarization efficiency (PE) is commonly defined as applicable to any length scale, 

feature/ die. At any length scale, it is a measure of how well the topography is reduced related to material 
removal due to CMP. It is related to material removal on the higher areas relative to lower area in any given 
feature/ die scale. For a similar set of features neighboring the feature of interest, pad properties determine 
the level of interaction of the pad with the high and low areas in any feature. Depending on the length scale 

() of the features of interest, the relevant properties of the pad that determine the mechanical action of the 
pad in the low areas towards RRLow can be expected to vary.  
 

 

Fig. 7: Planarization efficiency and different length scales. 
 
Table I captures the key contributors at appropriate feature length scales, and the relevant DuPont’s 

proprietary property parameters (LAA, Bend, and Stack). Understanding these dependencies is critical for 

pad selection for the process need. 
 



 
 

 

 

Based on material properties, compared to the POR pad, both Pad C and Pad D in Figs. 3 and 4 are 

expected to have a 50% lower tendency to interact with the low areas in the features of interest (= 300m 

~ 600m). This explains the improved planarization efficiencies observed for the Pads C and D relative to 
the POR. 

 

Feature length scale,  Key contributor towards RR
Low

 Material property parameter of interest 

 (m) Top pad polymer 
LAA

 

 (m) Top pad composite 
Bend

 

 (m) Top pad+ subpad stack 
Stack

 

Table I: Expected key contributors and property parameters of interest for planarization for various feature 

scales. 

The configurations of Pad C and Pad D use different subpads. The top-pad + subpad stack in Pad D is 
expected to offer 20% higher tendency to interact with low areas, and hence improved planarization than 
Pad C. However, the results in Fig. 4 indicate that in general Pad C seems to offer improved topography 
over all 3 Macros with tighter Macro to Macro delta (i.e., within-die topo uniformity). Among other factors, 
these observations point to the need for a more detailed understanding of any differences in pitches, and 
pattern density neighboring the features of interest across the 3 macros. 

 
In any polish process, for a given set of consumables, the state of contact at wafer scale can be impacted 

by pad macro feature like grooves while that at texture scale can be impacted by micro features like pores, 
porosity, and the pad polymer properties. Table II compares the properties relevant for defectivity, of the 

pads tested along with typical expected contact areas. force is defined as the ability of full asperity to apply 

force back to wafer; strength signifies the resistance of the asperities to fracture; and Rigidity denotes the 

rigidity of asperity in polish environment. Compared with Pad X (POR), Pad Y with 20% lower Force and 

smaller pore sizes can be expected to offer more lubricated state increasing the pad-wafer gap which 
reduces the frequencies of particle-wafer collisions (Fig. 8) and hence the observed material removal rates. 

 

  Pad X (POR) Pad Y 

SG 0.8 0.8 

Avg pore size,  40 20 

Porosity 0.3 0.31 

Force 1 0.8 

Strength 1 1.3 

Rigidity 1 0.92 

Static Contact Area at 2psi, % 0.05 0.15 

Table II: Selected characteristics of Pad X and Pad Y used in defectivity study. 

 
Different mechanisms lead to different types of defects. Here we focus on the polish scratches which can 

be explained based on the sliding action on the wafer of a harder indenting ceria particles sticking on a tall 
asperity (Fig. 9).  The asperity’s proximity to the wafer and its mechanical strength to take the wafer load 
play a key role. The less lubricated state of pad-wafer contacts with POR pad (from Fig. 8) coupled with its 

ability to take the wafer load (given its higher Rigidity) lead to more polish scratches compared to Pad Y. 
Depending on the mechanism at play, the knobs for controlling the defects can vary. 

 



 
 

 

 

 

Fig. 8: Expectations of processes within Pad X and Pad Y based on typical contact areas and known 

Force parameters from Table II. 
 

 
Figure 9: Mechanism for scratches in ceria polishing 

 
It should be noted that the amount of scratch reduction from CMP pads can vary, depending upon the 

type of ceria slurry used. Ceria abrasives are known to be chemically reactive on oxide surface. The phase, 
morphology, and manufacturing process of ceria abrasives can all modulate the Ce3+/Ce4+ ratio and hence 
chemical reactions on oxide surface. Similarly, additives in the slurry can play a role in the bonding strength 

between ceria and oxide surface. All these factors can interfere with Force parameter and modulate the 

extent of scratch reduction. 
 
 

CONCLUSIONS 
In this study, CMP pads of different designs and characteristics are tested to reduce within-die 

topography for ILP applications, and to reduce scratch defects with ceria slurry for SON CMP. Greatly 



 
 

 

 

improved planarization efficiency is achieved with CMP pads of specific designs whereby more than 50% 

reduction in topography across feature length of hundreds of m is demonstrated, compared with POR. 
Meanwhile, > 70% scratch defect reduction is accomplished by pads of the same hardness and porosity. 

 
The keys to topography and defecivity reduction by CMP pads require multi-parameter optimization of 

pad characteristics. The mechanical properties of surface asperity as well as the bulk material properties 
can be optimized to design a pad that would not touch upon the low features wafer surface topography for 
better planarization efficiency. The properties of subpad can also play a role too. Smaller pore size 
combined with lower force that asperities can apply back to wafer can help reduce defects generated by 
ceria slurry polishing. 
 
 


