RISK OF NEUTRON GENERATION WITH IMPLANTATION OF LIGHT IONS

NCCAVS JTG Recent Studies of Ion Implantation Technology Issues

December 8th, 2022

J.A. Turcaud, Ph.D.* C. Heckman, V. Heckman, A. Hassan, R. Pong & J. Schuur

II-VI/COHERENT COMBINATION AT A GLANCE Innovations that resonate

FY22 Revenue⁽¹⁾ **\$4.8B**

Engineering & Technology **4,500+** Employees⁽²⁾ **28,000+** Employees⁽²⁾

3,000+ Patents⁽²⁾

3 Segments⁽²⁾

- Materials
- Networking

Lasers

4 Markets⁽²⁾

Industrial

- Communications
- Electronics
- Instrumentation

Vertically Integrated Model

Effective September 8, 2022, II-VI Incorporated is now named Coherent Corp. and trades under the ticker symbol COHR.

Table of contents

1. Coherent Ion Implantation Platform

- World's oldest & largest implantation foundry
- A versatile portfolio of process capabilities
- Extensive elemental capabilities

2. Neutron Generation with Light lons

- Background
- Highest neutron yield with deuterium implantation
- Neutron yield with ${}^{1}H+$, $H_{2}+/{}^{2}D+$, ${}^{4}He+$ and ${}^{4}He++$
 - As a function of beam current
 - As a function of energy
 - Isotropic neutron yield
- Detector sensitivity

COHERENT ION IMPLANTATION PLATFORM *World's oldest & largest ion implantation foundry*

C

HERENT

Copyright 2022, Coherent. All rights reserved.

COHERENT ION IMPLANTATION PLATFORM *A versatile portfolio of capabilities*

Energy single + (keV)	Wafer Diameter (mm)					(w	ith o	Pr othe	ima r ava	ry Sp ailabl	ecie e on	es dema	and)						Dose Range	Max Tilt Angle			
									ł	ligh	En	ergy											
10 - 1000	50 - 150	н	Не	в	Ρ	BF2	As			Si		Ar	С	N	ο	Ga	Be	AI	E11 – E17	90° (4") & 60° (6")			
									Sta	anda	rd E	Inerg	ју										
1 - 250	50 - 300	н	Не	в	Ρ	BF2	As	In	Sb	Si	Ge	Ar	С	N	ο			AI	E10 – E17	90° (4") & 60° (6")			
										Spe	ecia	lty											
1 - 210	Various		Most e	eleme	ents.	Contac	t us f	or de	etails.	. LN Co	ooled	& hea	ted c	apab	ility o	n dema	and		E8 – E16	0° - 90°			
										He	eate	d											
5 - 335	(50 -) 150	н	Не	в	Ρ	BF2						Ar	С	N	ο			AI	E10 – E16	45 °			

✓ Newly added heated implantation reinforcing an already comprehensive portfolio of ion implantation capabilities

COHERENT ION IMPLANTATION PLATFORM

Extensive elemental capabilities

C HERENT

Table of contents

1. Coherent Ion Implantation Platform

- World's oldest & largest implantation foundry
- A versatile portfolio of process capabilities
- Extensive elemental capabilities

2. Neutron Generation with Light lons

- Background
- Highest neutron yield with deuterium implantation
- Neutron yield with ${}^{1}H+$, $H_{2}+/{}^{2}D+$, ${}^{4}He+$ and ${}^{4}He++$
 - As a function of beam current
 - As a function of energy
 - Isotropic neutron yield
- Detector sensitivity

NEUTRON GENERATION WITH LIGHT IONS Background

lon	Target	Reactions	Threshold energy (keV)
Hydrogen	² D - deuterium	² D(p,n)2p	? -
¹ H+/p	¹¹ B - boron	¹¹ B(p,n) ¹¹ C	< 1000 ^{a)}
	² D - deuterium	² D(d,n) ³ He	0 ^{b)}
	⁹ Be - beryllium	⁹ Be(d,n) ¹⁰ B	< 250 ^{c)}
Deuterium	¹⁰ B - boron	¹⁰ B(d,n) ¹¹ C	10 ^{a)}
² D+	¹⁰ B - boron	¹⁰ B(d,p) ¹¹ B	200 ^{d)}
	¹¹ B - boron	¹¹ B(d,n) ¹² C	200 ^{d)}
	¹² C - carbon	¹² C(d,n) ¹³ N	330 ^{e)}
	⁹ Be - beryllium	${}^{9}\text{Be}(\alpha,n)^{12}\text{C}$	0 ^{f)}
Helium ions	¹⁰ B - boron	$^{10}B(\alpha,n)^{13}N$	0 ^{f)}
⁴ He+ / ⁴ He++ / α	¹¹ B - boron	$^{11}B(\alpha, n)^{14}N$	0 ^{f)}
	¹³ C - carbon	$^{13}C(\alpha,n)^{16}O$	0 ^{f)}

- B(11) is noted ¹¹B as 11 is the AMU
- α refers to the particle ⁴He++ (and ⁴He+)

¹¹B(α,n)¹⁴N reaction is Target + accel ion > outgoing particle + product

- b) N. Jarmie, "Low-Energy Nuclear Fusion Data and Their Relation to Magnetic and Laser Fusion", Los Alamitos Laboratory, Master Thesis
- Zhang S-J. et al., "Measurements of neutron energy spectra of 9Be(d,n)10B reaction with a thick beryllium target", Chin. Phys. C 45 (2021) 2, 024002. c)
- W. Burke, J. Risser and G. Phillips, "Angular Distributions and Excitation Curves for the B10(d,p)B11 and the B10(d,n) and B11(d,n) Reactions below 2-MeV Bombarding Energy," Physical Review, vol. 93, no. 1, d) pp. 188-192, 1954

 $^{11}B + {}^{4}He + + \rightarrow {}^{1}n + {}^{14}N$

- V.K. Basenko et al., "Carbon target as neutron source from 12C(d,n)13N and D(d,n)3He reactions", March 2018 Nuclear Physics and Atomic Energy 19(1):80-83 e)
- G. Vlaskin and Y. Khomiakov, "Calculation of Neutron Production Rates and Spectra from Compounds of Actinides and Light Elements," EPJ Web of Conferences, vol. 153, p. 07033, 2017.

- Deuterium, H_2 + & Helium ions are the riskiest ions to implant
- Threshold energies within broad range and high energy implanter capabilities
- Absorbed ions on the strike parts in the tool represent potential target for subsequent light ions

NEUTRON GENERATION WITH LIGHT IONS *Highest neutron yield with deuterium implantation*

- OSHA limit =
- Axcelis spec =
- ICRP =

t = 0.57 mrem/hr - permissible exposure limit for radiation is 5 rem/year (*CFR 1910.1096*) 0.054 mrem/hr

0.01 mrem/hr - International Commission on Radiological Protection recommendation is 0.1 rem/year (*ICRP 1990*)

Quasi-exponential increase of neutron generation with energy

- Above ICRP around the tool from 35 keV / 75 uA
- Up to OSHA limit for 85 keV & 100 uA on the Faraday
- Half dose on the wafer with PR or paper.

NEUTRON GENERATION WITH LIGHT IONS *Neutron yield with*¹*H*+, *H*₂+/²*D*+, ⁴*He*+ and ⁴*He*++ as a function of energy

- Measurement realized at hottest location, i.e., next to resolver with impact on resolver
- Neutron generation from ¹H+, H₂+/²D+, ⁴He+ and ⁴He++
 - Stronger reaction from $H_2 + /^2 D + \rightarrow$ deuterium ions analyzed with AMU 2 $H_2 + ions$
 - Exponential increase of radiation exposure with energy
- All radiation doses are below OSHA & getting close or at OEM limits for this experiment

NEUTRON GENERATION WITH LIGHT IONS

Neutron yield with ${}^{1}H+$, $H_{2}+/{}^{2}D+$, ${}^{4}He+$ and ${}^{4}He++$ as a function of beam current

- Measurement realized at hottest location, i.e., next to resolver with impact on resolver
- Neutron generation from ¹H+, H₂+/²D+, ⁴He+ and ⁴He++
 - Stronger reaction from $H_2+/^2D+$ with deuterium ions analyzed with AMU 2 like H_2+ ions
 - Linear to log increase of radiation exposure with beam current

All radiation doses are

- Above the ICRP limit
- Going above to near Axcelis limits for H₂+/²D+ & ⁴He+
- Below OSHA limit for all

NEUTRON GENERATION WITH LIGHT IONS *Isotropic neutron yield*

Isotropic neutron generation

- 1/R² decrease with distance
- Below OEM spec at 1m below tool for these beam current/energies
- Below OEM spec on top of the tool for these beam current/energies
- Need to keep this in mind for surrounding floors

700

NEUTRON GENERATION WITH LIGHT IONS

- BF₃ detector loses up to ½ of sensitivity compared to He³ detector in the range 500 to 700 keV
 - For $H_2 + \frac{2}{D} + \frac{4}{He} + and ^{1}H + (not shown here) \rightarrow less sensitive from smaller cross section$
 - Emitted neutrons have an energy range right in a less sensitive part of the detection spectrum

Summary

Background

- Neutron generating reactions from light ion implants have threshold energies within implanter capabilities
- $^{2}D+$, $H_{2}+$ & He+ ions are the riskiest ions to implant
- Absorbed ions on the strike parts represents target for subsequent light ions
- Neutron yield with ${}^{1}H+$, $H_{2}+/{}^{2}D+$, ${}^{4}He+$ and ${}^{4}He++$
 - Stronger reaction from $H_2 + /^2 D + \rightarrow$ deuterium ions analyzed with AMU 2 $H_2 +$
 - Exponential increase of radiation exposure with energy
 - Linear to log increase of radiation exposure with beam current
 - Radiation levels above the ICRP limit, above to near Axcelis limits for $H_2+/^2D+ \& ^4He+$ for highest energies & below the OSHA limit (except high energy/current H_2+)

Isotropic neutron generation

- 1/R² decrease with distance for current implant energies
- Need to keep in mind of surrounding floors
- Neutron detector sensitivity
 - BF₃ detector loses up to $\frac{1}{2}$ of sensitivity compared to He³ detector in the range 500 to 700 keV

Special care & precautions must be followed for light ion implantation

THANK YOU

COHERENT

INNOVATIONS THAT RESONATE