
Copyright 2022, Coherent. All rights reserved.

RISK OF NEUTRON GENERATION 
WITH IMPLANTATION OF LIGHT IONS 

NCCAVS JTG 

Recent Studies of Ion Implantation Technology Issues

December 8th, 2022 

J.A. Turcaud, Ph.D.*

C. Heckman, V. Heckman, A. Hassan, R. Pong & J. Schuur



Copyright 2022, Coherent. All rights reserved.

Vertically Integrated Model

II-VI/COHERENT COMBINATION AT A GLANCE
Innovations that resonate
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Engineering & Technology
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$4.8B

4 Markets(2)

▪ Industrial

▪ Communications

▪ Electronics

▪ Instrumentation

3 Segments(2)
▪ Materials

▪ Networking

▪ Lasers

Effective September 8, 2022, II-VI Incorporated is now named 

Coherent Corp. and trades under the ticker symbol COHR. 
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COHERENT ION IMPLANTATION PLATFORM
World’s oldest & largest ion implantation foundry
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Energy 

single +

(keV)

Wafer 

Diameter 

(mm)

Primary Species 
(with other available on demand)

Dose 

Range
Max Tilt Angle

High Energy

10 - 1000 50 - 150 H He B P BF2 As Si Ar C N O Ga Be Al E11 – E17 90˚ (4”) & 60˚ (6”)

Standard Energy

1 - 250 50 - 300 H He B P BF2 As In Sb Si Ge Ar C N O Al E10 – E17 90˚ (4”) & 60˚ (6”)

Specialty

1 - 210 Various Most elements. Contact us for details. LN Cooled & heated capability on demand E8 – E16 0˚ - 90˚

Heated

5 - 335 (50 -) 150 H He B P BF2 Ar C N O Al E10 – E16 45˚

✓ Newly added heated implantation reinforcing an already comprehensive portfolio of ion implantation capabilities

COHERENT ION IMPLANTATION PLATFORM
A versatile portfolio of capabilities
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COHERENT ION IMPLANTATION PLATFORM
Extensive elemental capabilities
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▪ B(11) is noted 11B as 11 is the AMU

▪ α refers to the particle 4He++ (and 4He+)

▪
11B(α,n)14N reaction is        11B + 4He++ → 1n + 14N

Target accel ion product
outgoing 

particle
+ +→

▪ Deuterium, H2+ & Helium ions are the 

riskiest ions to implant

▪ Threshold energies within broad range 

and high energy implanter capabilities 

▪ Absorbed ions on the strike parts in the 

tool represent potential target for 

subsequent light ions

NEUTRON GENERATION WITH LIGHT IONS
Background

Ion Target Reactions Threshold energy (keV)

Hydrogen 
1H+ / p

2D - deuterium 2D(p,n)2p ?                   -
11B - boron 11B(p,n)11C < 1000              a)

Deuterium 
2D+

2D - deuterium 2D(d,n)3He 0                  b)

9Be - beryllium 9Be(d,n)10B < 250               c)

10B - boron 10B(d,n)11C 10                a)

10B - boron 10B(d,p)11B 200               d)

11B - boron 11B(d,n)12C 200               d)

12C - carbon 12C(d,n)13N 330               e)

Helium ions 
4He+ / 4He++ / α

9Be - beryllium 9Be(α,n)12C 0                  f)

10B - boron 10B(α,n)13N 0                  f)

11B - boron 11B(α,n)14N 0                  f)

13C - carbon 13C(α,n)16O 0                  f)

https://www.researchgate.net/journal/Nuclear-Physics-and-Atomic-Energy-1818-331X
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Quasi-exponential increase of neutron generation with energy 

▪ Above ICRP around the tool from 35 keV / 75 uA

▪ Up to OSHA limit for 85 keV & 100 uA on the Faraday

▪ Half dose on the wafer with PR or paper.

NEUTRON GENERATION WITH LIGHT IONS
Highest neutron yield with deuterium implantation

• OSHA limit = 0.57 mrem/hr - permissible exposure limit for radiation is 5 rem/year (CFR 1910.1096)

• Axcelis spec = 0.054 mrem/hr 

• ICRP = 0.01 mrem/hr - International Commission on Radiological Protection recommendation is 0.1 

rem/year (ICRP 1990)
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▪ Measurement realized at hottest location, i.e., next to resolver with impact on resolver

▪ Neutron generation from 1H+, H2+/2D+, 4He+ and 4He++

• Stronger reaction from H2+/2D+ → deuterium ions analyzed with AMU 2 - H2+ ions

• Exponential increase of radiation exposure with energy

▪ All radiation doses are below OSHA & getting close or at OEM limits for this experiment

NEUTRON GENERATION WITH LIGHT IONS
Neutron yield with 1H+, H2+/2D+, 4He+ and 4He++ as a function of energy
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▪ Measurement realized at hottest location, 

i.e., next to resolver with impact on resolver

▪ Neutron generation from 1H+, H2+/2D+, 4He+ 

and 4He++

• Stronger reaction from H2+/2D+ with 

deuterium ions analyzed with AMU 2 like 

H2+ ions

• Linear to log increase of radiation exposure 

with beam current

▪ All radiation doses are 

• Above the ICRP limit

• Going above to near Axcelis limits for 

H2+/2D+ & 4He+ 

• Below OSHA limit for all

NEUTRON GENERATION WITH LIGHT IONS
Neutron yield with 1H+, H2+/2D+, 4He+ and 4He++ as a function of beam current
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NEUTRON GENERATION WITH LIGHT IONS
Isotropic neutron yield

▪ Isotropic neutron generation

• 1/R2 decrease with distance

• Below OEM spec at 1m below tool for these beam current/energies

• Below OEM spec on top of the tool for these beam current/energies

▪ Need to keep this in mind for surrounding floors

AboveBelow

H2+/2D+

5
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500 keV

700 keV

▪ BF3 detector loses up to ½ of sensitivity compared to He3 detector in the range 500 to 700 keV

• For H2+/2D+, 4He+ and 1H+ (not shown here) → less sensitive from smaller cross section

• Emitted neutrons have an energy range right in a less sensitive part of the detection spectrum

Detecting 

gas

Neutron 

capture cross 

section (barns)

Reaction
Sensitivity

Cts/mRem

Gamma response

(Cs137@1 

Rem/hr)

3He 5333 n + 3He → 3H + 1H + γ (0.76MeV ) 50000 < 1%

BF3

(96%10B)
3840

10B + n = 7Li + α    (1.78MeV)
10B + n = 7Li* + α   (1.47MeV)

12000 < 1%

Neutron Response

BF3 detectors

L. Lakeotes & C. Marianno, “Comparisons in Neutron Detection, as modeled by MCNPX, in Li-6 Glass, HE-3, BF-3, and Borated PVT” National Security Technologies.

Courtesy of Far West Technology Inc.

NEUTRON GENERATION WITH LIGHT IONS
Detector sensitivity  10BF3 vs. 3He
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▪ Background

• Neutron generating reactions from light ion implants have threshold energies within 

implanter capabilities 

• 2D+, H2+ & He+ ions are the riskiest ions to implant

• Absorbed ions on the strike parts represents target for subsequent light ions

▪ Neutron yield with 1H+, H2+/2D+, 4He+ and 4He++

• Stronger reaction from H2+/2D+ → deuterium ions analyzed with AMU 2 - H2+

• Exponential increase of radiation exposure with energy

• Linear to log increase of radiation exposure with beam current

• Radiation levels above the ICRP limit, above to near Axcelis limits for H2+/2D+ & 
4He+ for highest energies & below the OSHA limit (except high energy/current H2+)

▪ Isotropic neutron generation

• 1/R2 decrease with distance for current implant energies

• Need to keep in mind of surrounding floors

▪ Neutron detector sensitivity 

• BF3 detector loses up to ½ of sensitivity compared to He3 detector in the range 500 to 

700 keV

Special care & precautions must be followed for light ion implantation

Summary
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