

Materials Modeling in Design/System Technology Co-Optimization (DTCO/STCO)

CONFIDENTIAL INFORMATION

The information contained in this presentation is the confidential and proprietary information of Synopsys. You are not permitted to disseminate or use any of the information provided to you in this presentation outside of Synopsys without prior written authorization.

IMPORTANT NOTICE

In the event information in this presentation reflects Synopsys' future plans, such plans are as of the date of this presentation and are subject to change. Synopsys is not obligated to update this presentation or develop the products with the features and functionality discussed in this presentation. Additionally, Synopsys' services and products may only be offered and purchased pursuant to an authorized quote and purchase order or a mutually agreed upon written contract with Synopsys.

Outline

- Technology Roadmap
- Advanced Logic Roadmap and DTCO
- Materials Modeling in DTCO
- DTCO for Power Electronics Applications
- QuantumATK: Defects and Diffusion Analyzer
- Materials Modeling in STCO

Technology Roadmap

Transformational Applications Continue to Motivate and Drive Semiconductor Industry and Technology Growth

Market Drivers Provide Key Direction for Semiconductor Technology Development

Advanced Logic Roadmap and DTCO

Industry Logic Roadmap Drives Significant Process Complexity, Development Cost and Risk: <u>High Value Problem</u>

Considerable development cost and risk in evaluating and selecting the right logic technology, and in manufacturing it with high yield Evaluation of Technology Options Requires Design-Level Metrics: Design-Technology Co-Optimization (DTCO)

DTCO Platform: *Optionality* in Technology Exploration, *Optimality* in Technology Refinement and Integration

OPTIONALITY

Various Phases of DTCO

Recent DTCO Projects at Leading Logic and Memory Companies

Customers	DTCO Projects
Customer A	Benchmarking logic block PPA for FinFET, CFET, and VFET
Customer A	Quantifying the impact of EUV patterning on logic block PPA
Customer A	Exploring different process integration schemes for BS PDN
Customer A	RO switching in S-Device for FinFETs with fin deformation/bending
Customer B	Benchmarking ring oscillator PPA for FinFET and GAA
Customer B	Optimizing M0 and M1 as a trade-off between logic block and SRAM array
Customer B	Tuning FinFET technology for cryogenic operation at 77 K
Customer C	Optimizing Sense Amplifier for the memory periphery
Customer C	Inserting QuantumATK analysis into logic PPA DTCO flow
Customer C	Pathfinding transistor architecture and process integration for RO on 2D materials
Customer D	Benchmarking GAA and CFET at a logic block PPA
Customer D	Optimizing number of stacked GAA channels at a logic block PPA
Customer D	Inserting QuantumATK analysis into logic PPA DTCO flow
Customer E	Tuning FDSOI technology for cryogenic operation at 4 K
Customer F	Optimizing 3D NAND bitcell for multi-bit storage
Customer G	Optimizing FinFET MOL design rules for specific chip design

Synopsys Publications Demonstrate DTCO Applications in Advanced Logic and Memory

Logic Block Level Design-Technology Co-Optimization is the New Moore's Law
(Invited)

Victor Moroz, Xi-Wei Lin, and Thuc Dam Synopsys, Inc., Mountain View, CA 94043, USA e-mail: victorm@synopsys.com; phone: 650-584-5458

IEEE EDTM 2020

Invited Paper

Ab Initio for Design-Technology Co-Optimization

Shela J. Aboud*, Joanne Huang, Jonathan Cobb, Tue Gunst, Plamen Asenov, Thuc Dam, Ricardo Borges Synopsys Inc., Mountain View, CA, USA,

SPIE Adv Litho 2021

Heterogeneous Integration Enabled by the State-of-the-Art 3DIC and CMOS Technologies: Design, Cost, and Modeling

X.-W. Lin¹, V. Moroz¹, X. Xu¹, Y. Gao¹, D. Rennie², P. Asenov³, S. Smidstrup⁴, D. Sherlekar¹, Z. Qin1, T. Fang5, J. Lee3, M. Choi1, and S. Jones6 ¹Synopsys, Inc., Mountain View, CA, USA, ²Synopsys Canada, Mississauga, Canada, ³Synopsys Northern Europe, Glasgow, UK, ⁴Synopsys Denmark ApS, Copenhagen, Denmark, ⁵Synopsys Taiwan, Hsinchu, Taiwan, ⁶IC Knowledge LLC, Georgetown, MA, USA, email: xiwei@synopsys.com

IEDM 2021

DTCO Launches Moore's Law Over the Feature Scaling Wall

V. Moroz¹, X.-W. Lin¹, P. Asenov², D. Sherlekar¹, M. Choi¹, L. Sponton³, L. S. Melvin III⁴, J. Lee², B. Cheng², A. Nannipieri³, J. Huang¹, and S. Jones⁵ Synopsys, Inc., Mountain View, CA, USA, 2Synopsys Northern Europe, Glasgow, UK, ³Synopsys Switzerland LLC, Zurich, Switzerland, ⁴Synopsys, Inc., Hillsboro, OR, USA, ⁵IC Knowledge LLC, Georgetown, MA, USA, email: victor.moroz@synopsys.com

IEDM 2020

Simulation-based DRAM Design Technology Co-Optimization: Why Random Dopant Fluctuations Matter

Salvatore Maria Amoroso,	Xi-Wei Lin, Victor Moroz			
Andrew R. Brown	Synopsys Inc, Mountain View, CA			
Synopsys Northern Europe Ltd., Glasgow, G3 8HB, Scotland, UK	94043, USA			

Ethan Kao

Taiwan

Synopsys Taiwan Ltd., Hsinchu,

SISPAD 2021

Materials Modeling in DTCO

QuantumATK Atomistic Simulation Tool

Materials Modeling: Many Opportunities for Integration and Optimization in Advanced Semiconductor Development

Ab initio Material Engineering

Electron scattering at grain boundaries in narrow wires

HKMG stack engineering:

- Threshold Voltage
- Leakage
- Remote Coulomb scattering

DTCO for Power Electronics Application

Power Electronics Applications Cover A Wide Range of Voltage and Current Ratings Across Many Applications

Source: Victor Soler Dissertation, Universitat Politecnica de Catalunya, 2019

EV Deployments Drive Growth in Power Electronics Sub-Systems: DC/DC Converters, DC/AC Inverters

Electric Vehicles Are Projected to Comprise 38% of Automotive Fleet by 2030

Source: IBS Global Semiconductor Industry Service Report, Automotive Electronics

High Efficiency Power Conversion Sub-Systems Are Critical for EV Performance

Source: Blaabjerg et al, Proc IEEE, 109, No 6, June 2021

SiC and GaN Power Transistors Are an Enabling Technology for Electric Vehicle Sub-Systems

Power Transistors Are Made Up of Thousands of Unit Cells With **Termination Structures in the Periphery**

Optimization of Power Transistor performance

- High blocking voltage
- Low on-state loss
- High current
- High reliability

requires co-design and optimization of **Unit** Cell, Termination, Corner and Layout of the components

Termination design requires large scale TCAD simulations

Synopsys Power Chip Design Flow

Electro-thermal Simulation is Solved Self-Consistently and Generates Data for Visualization of Power Chip Performance

Al Implantation in SiC is Used to Form the p+ Body and Channel Regions in Modern SiC MOSFETs

Source: Victor Soler Dissertation, Universitat Politecnica de Catalunya, 2019

... Increasingly AI Implantation in SiC is Also Used in Termination Structures Targeting Very High Blocking Voltage Devices

Source: Victor Soler Dissertation, Universitat Politecnica de Catalunya, 2019

GaN RF and Power Electronics Devices Require Mg Implantation for Termination Design

Sear

Tut

FIG. 1. Cross-sectional schematic of a T-MOSFET. A p-type body layer uniformly doped with Mg below 10^{18} cm⁻³ can be formed by the MOVPE method. Selective-area doping for the edge termination will be achieved by Mg ion implantation. The p⁺ body contact can be formed by either MOVPE growth or Mg ion implantation.

Progress on and challenges of p-type formation for GaN power devices [©]

Cite as: J. Appl. Phys. **128**, 090901 (2020); https://doi.org/10.1063/5.0022198 Submitted: 20 July 2020 • Accepted: 14 August 2020 • Published Online: 02 September 2020

🔟 Tetsuo Narita, Hikaru Yoshida, Kazuyoshi Tomita, et al.

https://docs.quantumwise.com/tutorials/smw_defects/smw_defects.html

	🛑 🖵 Try it! = 🏳 QuantumATK = 💉 Contact				
	Docs » Tutorials » New or Recently Updated Tutorials » Using the Sentaurus Materials Workbench for studying point defects				
zh Q	Using the Sentaurus Materials W point defects	orkbench for studying			
orials	Version: P-2019.03				
ew or Recently odated Tutorials	In this tutorial, we will use the comprehensive, and highly-automated framework provided by the	Downloads & Links			
New for QuantumATK P- 2019.03	QuantumATK module Sentaurus Materials Workbench (SMW) to calculate the formation energies and transition layels for a variet	▲ PDF version			

Synopsys[®]

QuantumATK: Defects and Diffusion Analyzer

Defect and Dopant Simulations with QuantumATK

Types of defects/dopants

- Vacancies
- Substitutional
- Interstitials
- Pairs
- Complex clusters
- Bulk and interfaces
- Crystal and amorphous
- Large systems

Defect/Dopant properties

- Defect formation energies/entropies
- Defect trap levels
- Dopant-defect binding energies
- Defect migration energies/entropies
- Dominant charge states for diffusion
- Diffusivity

Simulation set-up and result analysis using GUI and Python scripting

Simulation Flow of Sentaurus Materials Workbench

Defect Structure Generations

Generate neutral or charged defects

Diffusion Parameter Calculations

- Defect formation energies/entropies
- Defect migration energies/entropies
- Dopant-defect binding energies
- Dominant charge states for diffusion

Generated by Sentaurus Materials Workbench pdbSet TitaniumNitride KMC Int Ef 5.49949 pdbSet TitaniumNitride KMC Int D0FS 0.305367 pdbSet TitaniumNitride KMC Vac Ef 0.635662 pdbSet TitaniumNitride KMC Vac D0FS 0.672997 pdbSetDoubleArray TitaniumNitride KMC Vac Em { V 3.61063

• Dopant concentration profile simulated with S-process KMC

An automatic process with QuantumATK's Sentaurus Materials Workbench

SYNOPSYS°

Defect Diffusion Example

• TiN Structure

2x2x2 unit cells (64 atoms) Rock salt structure (space group: 225)

Diffusion Process

Chemical Potential

Defect migration

Defects in SMW

• Vacancy

 $\mathsf{AI}_{\mathsf{Ti}}$

 AI_N

Substitutional

Defect pair

Interstitial

Cluster

Define Reference Structure

From MaterialDatabase

• Select a reference material from Material Database, define the defects with Defect/Diffusion Scripter, and then run the script.

🔊 Material Database 🛛 🛛 🗙			0	Defect Scripter _	۲	Editor(2) - defect_diffusion.py* _ 🗆 🗙				
					Material Defect structure			<u>File</u> <u>Edit</u> <u>Windows</u> <u>H</u> elp		
	, Filter	1			TiN_216_DFT_SCAN Database	¥		🛛 🔒 🗛 🧷 😒 🏂 🗊		
	Name	Formula	# atoms Calculator	Calculate phonons	Defect types			from CMM dependent		
	Iridium_256_DFT_SCAN	Ir	256 LCAO	Generally applicable	-		1	Trom SMW Import *		
	Iron_250_DFT_SCAN	Fe	250 LCAO	Generally applicable	Interstitiat		2	# Material		
	MgO_216_DFT_SCAN	MgO	216 LCAO	Generally applicable	🗘 Add		5	# Material		
	Palladium_256_DFT_SCAN	Pd	256 LCAO	Generally applicable			4	material = MaterialSpecificationSbatabase.fin_216_DFT_SCAN		
	Platinum_256_DFT_SCAN	Pt	256 LCAO	Generally applicable			5	I. D. faste		
	Ruthenium_288_DFT_SCAN	RU	288 LCAU	Generally applicable	Interstitial		6	# Defects		
	SIC_2H_300_DFT_SCAN	SIC	300 LCAO	Generally applicable	Element Phosphorus		/	# Defect list 0		
	SIC 6H 384 DET SCAN	sic	300 LCAO	Generally applicable			8	charge_states = [0]		
	SIO2 243 DET SCAN	SiO2	243 LCAO	Generally applicable	Charge states 0 - 0			- derect_list_0 = interstitialList(
	Silicon 216 DET SCAN	Si	216 LCAO	Generally applicable				material_specifications=material,		
	TaN 270 DFT SCAN	TaN	270 LCAO	Generally applicable	N		41	interstitial_element=Phosphorus,		
	Tantalum 250 DFT SCAN	Та	250 LCAO	Generally applicab				charge_states=charge_states		
	TIN_216_DFT_SCAN	TiN	216 LCAO	Generally applicab		B	P)		
	Titanium_200_DFT_SCAN	Ti	200 LCAO	Generally applicab	Defects	- <u>o</u> - <u>o</u> - <u>o</u> - <u>o</u> - <u>o</u> -	14	nlsave('TiN_216_DFT_SCAN.hdf5', defect_list_0)		
	Tungsten_250_DFT_SCAN	W	250 LCAO	Generally applicable			15	defect_list_0.update()		
	ZrO2_324_DFT_SCAN	ZrO2	324 LCAO	Generally applicable	Filter		V 16			
4				•	Defect Information		17			
					✓ Interstitial at (0.25, 0.25, 0.25)					
T	iN_216_DFT_SCA	N								
Ge	Generally applicable high-precision parameters for defects in									
						Command to run Script.				
	atorial			BEEEE	10					
				-+-+-+-+-+-	<u>R</u> esults file			atknython input ny		
FC	ormula IIN			A C A	TiN_216_DFT_SCAN.hdf5	x → Z				
#	Atoms 216				Process per defect					
La	ittice Simple Cubic		-		Automatic 🏝					
	(2 2 2)				Automatic w					
				Close		*		🔤 🌩 💡		

Visualize Defect Information with Defect List Analyzer

• Open defect list with Defect List Analyzer

Visualize Defect Information with Defect List Analyzer

Open defect list with Defect List Analyzer

Defect Analyzer (Pair, V/N^Ti 0+Ti 0/0+8

QuantumATK for Surface Reactions: Thermodynamics and Kinetics

Thermochemistry Analyzer: Screen for Most Favorable Reactions as a Function of Temperature and Pressure

ДG

Functionality:

Compare multiple possible reactions in a process and find the most favorable ones at given conditions (screening reactions)

- R1: $A_{surface} + B1_{gas} \rightarrow AB1_{gas}$ R2: $A_{surface} + B2_{gas} \rightarrow AB2_{gas}$
- At T=T1, both reactions are equally probable, subject to kinetic barriers
- Below T=T1, R1 is more favorable than R2 (lower ΔG), VV
- Gas B1 is favorable at low T and gas B2 at high T

Free energy difference:

Temperature

SYNOPSYS[®]

QuantumATK Steps for Thermochemistry Analyzer

- 1. Build surface slab
 - Choose bulk crystal material
 - Cleave surface
 - ("Melt and quench" if amorphous)
 - (Functionalize dangling bonds)
 - (Optimize slab)
- 2. Choose reactant molecule
 - Choose molecule stoichiometry (GUI or Z-matrix)
 - (Optimize initial configuration)
- 3. Adsorb reactant on surface
 - Choose surface coverage
 - Choose ordered vs random
 - Find binding sites (fixed atomic coord.)
 - Find height (fixed atomic coord.)
 - Optimize slab+molecule

Machine Learned Force-Field Schemes for Fast, Accurate MD Simulations

- Accurate *ab initio* methods are computationally demanding and limited to studies of small systems or periodic structures
- Empirical force-fields are used for large systems and trade accuracy for computational efficiency
- Machine learning (ML) methods close this gap and allow for the study complex systems at *ab initio*-level accuracy

Machine Learned Force-Fields can be Trained for Unknown Materials and Systems

Machine Learning is used to generate a Moment Tensor Potential (MTP) Force Field scheme

A. V. Shapeev, Mult. Model. Sim., 14, 1153 (2016).Y. Zuo et al., J. Phys. Chem. A, 124, 731 (2020).

Ab Initio Materials Modeling Can be Used to Engineer Threshold Voltage

- High-K Metal Gate (HKMG) stack engineering is needed to realize the Vt:
 - Aluminum-hafnium dipole insertion for PMOS Vt
 - Lanthanum-hafnium dipole insertion for NMOS Vt
- HKMG stacks with target Vt can be designed and optimized with MD using MTPs
- Final Vt extraction is done with DFT
- Material composition extracted from atomistic
 HKMG stacks can be compared with SIMS/XPS

Creating proper stack geometries with DFT is extremely time-consuming.

Materials Modeling in STCO

System Technology Co-Optimization (STCO) Scope

- PPAC (Power-Performance-Area-Cost) is the main technology metric
- Smaller scale PPAC analysis is faster and therefore enables evaluation of many technology and design options
- Larger scale DTCO/STCO analysis requires a larger effort, but enables bigger PPAC gains

STCO for 3D IC Stacking

Synopsys®

Warpage of a Stack of 2 Chiplets on a Larger Chip

50 um thick Si die

Weak warpage, but high Si stress

100 nm thin Si die

NMOS Idlin Map for a Stack of 2 Chiplets on a Larger Chip

50 um thick Si dies

100 nm thin Si dies

PMOS Idlin Map for a Stack of 2 Chiplets on a Larger Chip

50 um thick Si dies

100 nm thin Si dies

Hybrid Bonding Technology Enables Sub-um Pitch

Fine-pitch Interconnect Scaling

Hybrid Bonding Process Flow [1]

[1] Albert Lan, "TSV and Hybrid Bonding Solutions for 3D Heterogeneous Integration Packaging Applying in Next Al/HPC Era", 17th International Conference on Device Packaging, '21

L. Jiang et al., ECTC 2022

Atomistic Modeling of Binding Strength of SiO₂ Surfaces

- Water layers between SiO₂/SiO₂ surfaces increase binding strength at larger surface separation
- OOH ligand coverage is beneficial to increase binding energy

- DTCO is already the main vehicle for transistor density scaling, and will keep Moore's law going
- STCO and 3D place-and-route are necessary to go beyond 2D IC limits
- Advanced quantum and atomistic modeling are instrumental in optimizing material properties for transistors and 3D IC stacking.

Synopsys® Silicon to Software[™]