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INTRODUCTION 

Hybrid wafer bonding is one of the most advanced 3D integration technologies. It uses metal-filled vias 
with a well-defined, very narrow permitted range of metal recess (dishing) provided by chemical mechanical 
planarization (CMP) [1]. The via dishing and via roll-off factors must be monitored precisely, which can be 
achieved by atomic force microscopy (AFM). Hence, the automated evaluation of AFM data is key for in-
line process control but also one of the major challenges.  

In this work, we propose an image-processing pipeline that detects a grid of vias in the AFM image based 
on expected ranges for via radius, grid pitch in vertical and horizontal direction, and grid rotation angle. 

Once the positions of all vias in the grid have been obtained, we can run several further analysis steps, 
such as determining the average dishing level inside the via perimeter or roll-off factor from the substrate 
to copper. We also compute a statistical summary across all vias of the grid, across different measurements 
on the same wafer, and across multiple wafers in a lot. The results are used to automatically generate 
customer reports. 

MANUAL DISHING ANALYSIS 

As shown in Fig. 1, we define the via dishing as the difference between the average height of all the pixels 
inside the via circle and a baseline height, which is the average height outside the via circle. Accordingly, 
the via roll-off factor is defined as the slope between the via edge and the maximum height between two 
adjacent vias.  

 

 
Fig. 1: Illustration of the via dishing and via roll-off factor. 

In the previous manual metrology flow, a commercial software tool reads the AFM images, which are 
stored in a proprietary text format defined by the equipment manufacturer. The software then performs a 
line-by-line levelling of the images, as described in the next section. Afterward, for each row of vias an 
analyst draws a single line in the image, trying to cross approximately the middle of each via. Only the 
pixels of that line will be used for the latter analysis, making it rather fragile. In the next step, the analyst 
places via boundaries. However, distinguishing the edges between the copper via and the surrounding 
substrate is especially difficult in the case of shallow dishing. Finally, the tool computes the average height 
of the pixels inside via boundaries and as a baseline the height of those pixels outside the via. The 
difference between the two is the dishing parameter. Similarly, the roll-off factor is computed using the same 
1D line segment.  

This semi-manual process is error-prone and extremely time-consuming. To apply it to the large amounts 
of images that arise during mass production we need to automate the process and increase robustness for 
noisy images or images with hard to distinguish via boundaries. 



 
 
 

OBJECTIVE 

A major goal of automating the via analysis was moving away from a 1D line-based analysis towards a 
2D analysis. In order to achieve that we needed to find the via circles inside an image. We quickly found, 
that identifying single via circles in the images with classical circle detection algorithms such as Hough 
transformation [2,3] lacked the robustness to detect all vias in the grid. For example too smooth via 
boundaries, irregular void patterns or circle-like structures in the substrate worsen the performance of the 
algorithm and result in undetected or misplaced vias. Here, an algorithm that utilizes the regularity of the 
grid to find the whole grid at once will still recognize hard-to-identify single vias in an expected grid location 
s and ignore off-grid circle pattern in the substrate. 

In the following, we present such an algorithm that efficiently finds the grid that best fits on the image. 
Based on the optimal grid we then perform a 2D via analysis and compute the dishing for all vias as well 
as the roll-off factor for all via gaps. Executing in real-time it allows for interactive via analysis.  

We will explain the algorithm on an example image, using pixels as vertical and horizontal dimension and 
an arbitrary height unit. For demonstration purpose, the example image is of outstanding quality, while in 
reality, the images are more heterogeneous, containing noise, artefacts, and manufacturing imperfections.  

ALGORITHM  

Image pre-processing 
The original AFM images as shown in Fig. 2 a) typically have substantial vertical and horizontal drifts, for 

example due to surface irregularities of the wafer. This is illustrated by the line profile in Fig. 3 a) for the 
blue line marked in the 2D image. Hence, we need to perform a so-called line-levelling equivalent to the 
one of the commercial tool. 

 

a)      b)    c)  
Fig. 2: Example AFM image with a 5x5 via grid. Original image a), levelled image b), and equalized image c). 

Therefore, each profile line is fitted separately with a first-order polynomial (orange line in Fig. 3 a)) from 
which it is then subtracted. Fig. 2 b) and Fig. 3 b) show the results respectively, with new color mappings 
adapted to the dynamic range of the image. Only for the visualization of the results, we clip the lowest and 
highest percentile of the pixels to equalize the image as seen in Fig. 2 c) and remove outliers.  

 

a)     b)   
Fig. 3: Marked line profile before a) and after b) line levelling. 

Parameter space definition 
The parameter space for a regular grid of vias has eight parameters listed in Table 1. For now, we 

disregard trapezoidal grids, as it would increase parameter space even further. Furthermore, the parameter 
range is narrowed through previous knowledge of the manufacturing process limitations. The grid center 
point and the angle are caused by the AFM measurement due to a slightly rotated or misaligned wafer. This 
leaves a 6-dimensional parameter space to be searched, which typically has between 1 and 30 million data 
points. 

 



 
 
 

Table 1: Overview of the grid parameters. 

Parameter Description Example selection 

(𝒏𝒙, 𝒏𝒚) Number of vias in the grid Single fixed values (5,5) 

𝒓 Via radius Target radius +/-2 pixels 

(𝒑𝒙, 𝒑𝒚) Grid pitch Target pitch +/-2 pixels with 0.2 pixel resolution 

(𝒙, 𝒚) Grid center point All pixels where all the vias of the grid are inside the image  

𝜶 Grid angle Between -1° and +1° with 0.5° resolution 

 
Edge detection 

In order to identify a circle based on the edge between the copper via and the substrate, we need to 
perform an edge detection algorithm. We can use a simple Sobel operator in the horizontal and vertical 
directions and then compute the magnitude of both values. In Fig. 4, we show the result of the edge 
detection algorithm. We clearly see the actual vias, but some additional artefacts that can throw off a Hough 
circle detection. 

a)    b)    c)  
Fig. 4: Sobel edge detection on the example image a). Hough transform for r=9 b) and r=11 c). 

Hough circle transformation 
The next step is performing a Hough circle transform based on the Sobel edge detection. In some 

implementations, the Hough transform is based on a Canny edge detection, which binarizes the Sobel 
image by “walking” along the high ridges of keeping the gradual slopes. However, in this context this works 
not reliable, because we actual want the gradual edge values to detect also the less obvious via circles. 

The Hough circle transform iterates over every possible radius in our parameter space, and over every 
pixel in the image and computes a value that indicates how probable a circle with that radius in the location 
actually is. The value is simply the sum of all pixels along the perimeter of the circle. The algorithm scales 
linearly with the number of pixels in the images, the number of different radii to evaluate, and the radius 
itself, because the perimeter length is proportional to the radius. In our example image, the algorithm ran 
for 1.5s on 256x256 pixels and five radii between 9 and 13 pixels. 

We define the Hough circle transform result as a 3-dimensional tensor  

𝐻(𝑟, 𝑥, 𝑦) ∈ ℕ|𝑟|×256𝑥256. 

For each radius, the result can be visualized as an image of the same size as the input. We show two of 
those images in Fig. 4 b) and c). The optimal radius, in this case, is 11, where the corresponding transform 
result shows clear and focused peaks in the center of each via. In contrast, the image for radius 9 has less 
focussed peaks with lower values. 
 
Brute force grid search 

While the next step is not of ultimate algorithmic beauty, it works well for limited parameter spaces. We 
simply iterate over all possible combinations of the parameters shown in Table 1, generate all center points 
of the corresponding grids, and sum the values from the Hough transform. Finally, the best fitting grid is the 
one with the maximum value in 𝑊. 



 
 
 

𝑊(𝑟, 𝑝𝑥 , 𝑝𝑦 , 𝛼, 𝑥, 𝑦) = ∑ ∑ 𝐻(𝑟,   𝑥 + 𝑖 ⋅ 𝑝𝑥 ⋅ sin(𝛼) + 𝑗 ⋅ 𝑝𝑦 ⋅ cos(𝛼) ,   𝑦 + 𝑖 ⋅ 𝑝𝑥 ⋅ cos(𝛼) − 𝑗 ⋅ 𝑝𝑦 ⋅ sin(𝛼))
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For the example image, the parameter space has ~3.2 million data points and runs in 0.95 seconds on a 
standard office laptop. Fig. 5 shows the results. 

 

a)    b)  
Fig. 5: Optimal grid of vias annotated on top of the r=11 Hough transform a) and the equalized example image b). 

Dishing and roll-off analysis 

Given via locations from the previous step, we define a circle with an inner radius 𝑟𝑖 = 𝑓𝑖 ⋅ 𝑟 smaller than 
the via radius (typically 𝑓𝑖 is 80%) to avoid taking into account also the voids and other via boundary effects. 

We average the height of all pixels inside that circle. Similarly, we define an outer radius 𝑟𝑜 = 𝑓𝑜 ⋅ 𝑟 (typically 

𝑓𝑜 is 120%) and define a rectangular box between the outer radii of two adjacent vias as the baseline box. 
The vertical extent of the box corresponds to the diameter of the detected via. The average height of all 
pixels inside that box is our baseline value. The difference between the two average heights is the dishing 
value. In Fig. 6, we illustrate that. The yellow circle represents the detected via radius, the red area the 
inner circle used for dishing computation, and the blue box between the dashed outer circles the baseline 
box.  

 

 
Fig. 6: Dishing and roll-off factor analysis in the 2D image. The red circle inside the via and the light blue baseline 

window are used for computing the dishing value and the dark blue strip is used for the roll-off factor. 

In order to compute the roll-off factor we define another rectangular box vertically centered in the baseline 
box with a fixed height (5 pixels in our example). The pixels in this roll-off box are averaged vertically, such 
that only a single line is obtained. The dark blue box in Fig. 6 illustrates the roll-off box. For the same 
example, Fig. 7 shows the plot for the five lines in the roll-off box in grey and the averaged line in dark blue. 
Over that averaged line, a polynomial of second order is fitted as shown in red. Now the roll-off factor can 
be calculated as the slope between the via edge and the maximum height (dashed lines). 



 
 
 

 
Fig. 7: Illustration of the roll-off factor computation. 

IMPLEMENTATION 

The complete code is implemented in Python. We read the AFM images using the pySPM library, which 
supports various proprietary formats such as the one of our AFM equipment. The algorithmic uses the 
NumPy library, exploiting the full potential its broadcasting rules to achieve a performance that is similar to 
an optimized C implementation. The report generation includes Microsoft Excel, CSV and graphical reports. 

In order to provide the analysis tool to our metrology analysts, we developed a web-based form using 
Streamlit. It allows uploading one or more images at once, setting the target parameters such as the 
expected radius and grid pitch, and generating the corresponding report automatically, with the push of a 
button. 

CONCLUSION 

We implemented an efficient algorithm that automatically analyzes the dishing and roll-off factor in AFM 
images after CMP. The algorithm is part of our in-house AFM analysis software suite, assisting the process 
engineers on a daily basis and saving hours in comparison to manual analysis with conventional software 
tools. We plan to extend our AFM analysis suite with additional algorithms for various use cases. 
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