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Abstract: Chemical Mechanical Planarization (CMP) 
has challenges in process control resulting in 
uniformity and topography problems that culminate 
into downstream process marginalities and yield fails. 
The current control schemes normally use pre 
thickness and tool polish parameters such as polish 
time to control the process. In this work, we propose 
using several incoming step parameters together with 
inline CMP polish parameters to develop models to 
control the process. As an example, a poly CMP stop 
on oxide has been used to develop models using 
DELTA OXIDE THK as the control metric. During 
model development, the analysis shows that upstream 
stress factors such as Bow and Warp in the Pre Photo 
Shape contribute to uniformity variation. Therefore, 
building a controller that uses a combination of both 
upstream steps and the inline CMP polish process 
parameters could possibly enhance the ability to 
control the DELTA OXIDE variation better. 
Exploratory and predictive analysis on the upstream 
step data is done using some statistical analysis and 
machine learning algorithms to identify a possible 
good controller from the upstream step parameters. 
Promising results are shown from model building with 
these data. The next steps will require combining this 
model with a process step controller to amplify 
predictive power of DELTA OXIDE THK. 

Index Terms:  CMP, DELTA, RPA. 

 

I. INTRODUCTION 
Today several CMP processes have challenges related to 

process control leading to uniformity and topography issues 

that eventually lead to probe fails. For example, for CMP 

processes with very thick oxide stacks of several microns, 

incoming stress and other factors have been shown to 

impact outgoing oxide uniformity thickness. These 

processes normally have Integrated Automated Process 

Control (iAPC) which uses only incoming pre CMP 

thickness but does not include incoming topography and 

stress. Figures 1 & 2 illustrate these issues.  

 

Figure 1: Graph showing Median and Range pre CMP thickness versus x-Bow 

 
Figure 2: Graph showing PRE and DELTA  CMP thickness versus DFC 
(Distance From Middle) ) for a thick Oxide CMP Process 

These similar problems shown in Figure 3 are being 

experienced for other process steps.  

 
Figure 3: Pre CMP PWG Image showing Stress on the Wafer for a thick Oxide 
CMP Process. 

At Poly CMP, for example, incoming factors such as 

incoming topography, and stress seem to impact the overall 

DELTA OXIDE removal thickness uniformity. Figure 4 

shows a graphical correlation of DELTA OXIDE to 

incoming topography.  
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Figure 4: Graph shows Impact of Incoming Step topography to Oxide Delta for Poly 
CMP 

The current R2R control schemes use only 1 single pre CMP 

(Figure 5) thickness and do not incorporate incoming 

topography and stress.  

 
Figure 5: Conventional Area Process Control Scheme 

 

Machine Learning in process control has been mostly 

focused on Area Process Control (APC) to enable better 

process control (1, 2). A few studies have shown modelling 

and machine learning considering a few steps in a module. 

For example, R. Ghulghazaryan and J. Wilson modelled 

various oxide deposition profiles on the impact of material 

removal rates during CMP (3). These still fall short of 

modelling and showing the impact of upstream steps on 

variations that are observed during the CMP process. 

In this work, we focus on Module Process Control (MDC) 

for the  machine learning Model schemes (Figure 6) that 

employ module-based data to control CMP processes. In 

this work, modelling for this poly  module has been used to 

develop models for better process control. 

 

 
Figure 6: New Module Process Control Scheme 

The primary goal is to assess the  factors upstream and 
within the process that influence the DELTA OXIDE 
THK of wafers in the POLY CMP step, and then use them 
to predict the DELTA OXIDE THK. This process is 
broken down into two steps: upstream step modeling and 
process step (Recipe Parameter Adjustment (RPA)) 
modeling. This paper will focus on the former.  
To our knowledge, no module machine learning and 
modeling work of CMP processes has been recently 
published. However, recently, M. Meiners and J. Franke 
used Machine Learning to apply Cross-Machine Control 
Loop to a downstream process from upstream processes in 
large series manufacturing (4). Although, their work is not 
in CMP, it provides useful insights in modeling that we use 
in this work. Their approach involved identifying relevant 
parameters upstream that showed high linear correlation to 
the downstream parameters, as well as multivariate 
modeling where linear relationships could not be easily 
identified. A ML regression algorithm was used to map the 
inter-relationships between these parameters and the 
downstream response as the complexities between various 
processes couldn’t be identified by linear correlations.  
 
 Modeling with the upstream steps will allow prediction of 
the response (Poly CMP DELTA_OXIDE_THK), 
providing feedback to the process, while an informed 
decision based on predictions from process parameters can 
help guide on which of the process parameters to be 
adjusted to produce optimal output. Of course, not all 
process parameters can be adjusted, hence subject matter 
expert (SME) knowledge on the process parameters to be 
adjusted will be needed in deciding the parameters to be 
used in the model. 
 
In modeling for the upstream parameters, current analysis 
involves multivariate modeling, where overlapping steps are 
combined and used to build the model. The steps were 
picked after evaluation of all steps in the module, based on 
sample size and correlation to response. In the analysis, 
parameters from the steps listed in Table 1 were used to 
build the model; these are primarily photo, etch, and wafer 
shape factors. Linear correlation with our response yielded 



 

 

moderate correlations with the best result coming from the 
DRY STRIP SEM CD step (Figure 7). 

 
Table 1: Steps Used in Model 

 
Figure 7: Linear Correlation of Features with DELTA THK 

As part of the exploratory analysis process, the distributions 
of features are examined. The distributions of the variables 
are analyzed to verify skewness or bimodality. A skewed 
distribution could yield low results for statistical tests. 
Skewed distributions can be handled by using the log, Box-
Cox, or square root transformations. The spread of the data 
is then analyzed for data count, mean, and standard 
deviations. Next, some corrective action is done to clean the 
data, which includes correcting skewness, outlier removal, 
and imputation of missing values. Since sampling of wafers 
is usually not done across all process steps, due to time 
constraint, most steps lack overlap in wafer data 
measurements. In this case, features are filtered by how 
much data are available, so that the ones with fewer missing 
data points can be imputed to fill missing values. 
 
After data exploration, correlation, data filtering, and 
imputation, there is a total of 1199 features left, which 
constitutes parameters belonging to the same steps. A 2-
step feature selection process is used to narrow down 
features to the core ones that will be used for machine 
learning. The 2-step feature selection process includes 
elimination of features with high collinearity, then using an 
embedded feature selector to determine features of high 
importance to model. 
 
Finally, several machine learning algorithms are attempted 
to model for the DELTA OXIDE THK from the selected 
upstream step features, after which an analysis is done to 
determine features having highest influence on the DELTA 
OXIDE THK response. 
 

II. METHODOLOGY 

A. Univariate analysis and Feature Distribution 

The data set used has 1085 observations and 3805 
parameter features across several upstream steps. 
The steps with highest correlation coefficients with respect 
to response are shown in Figure 7. 
 
Linear correlations with DELTA OXIDE THK do not 
show very high correlation coefficients which means the 
correlation is not very strong. The highest coefficient is 
0.522 from the DRY STRIP SEM CD step. PHOTO REG 
and BACKSIDE DEP SHAPE are showing moderate 
correlation strength as well. Although correlation does not 
imply causation, it could be inferred that these steps have 
some significance to the outcome of the DELTA OXIDE 
THK measurements. This, however, should be confirmed 
with a multivariate analysis to determine the steps that hold 
highest importance in predicting DELTA OXIDE THK. 
 
The distributions of these features are as shown in the 
correlation plots in Figure 8. The response itself shows a 
somewhat normal distribution (Figure 9). 

 
 

 
 
 
 
 
 
 
 
 

 

 

Figure 8: Regression Plots with Distributions of Highest Correlating Features 
with DELTA THK 

Figure 9: Distribution of  DELTA OXIDE THK 
Response 
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B. Data Cleaning and Imputation 

Since not all wafers are sampled across all steps, there is a 
lack of overlap in most step parameters, leading to missing 
values in rows across multiple steps. To correct this 
problem, an analysis on how much data is available per 
column and per row is done. Rows with no data present in 
any of the columns are dropped. Columns that have at least 
20% data are kept. It is important to note that the typical 
practice is to keep columns with at least 70% of available 
data. This, however, poses a challenge as wafers are not 
sampled across all steps. Feature columns showing only one 
unique value are also dropped as correlation cannot be 
determined from a single value distribution. After filtering 
out rows and columns, the sample size drops to 692 rows 
and 1199 features.  
Table 2 below shows a sample of available data for a few 
selected wafers. 
 

Imputation of missing values is done using a KNN Imputer 
algorithm, which uses Lot Id, Wafer Id, and available inline 
data to estimate the missing data. Other methods of 
imputation include using column average, standard 
deviation, or modal value. KNN Imputer is preferred in this 
case as it considers other dimensions in the data.  
 
Imputation of missing values is inferenced from majority 
data to fill the minority unavailable. In this case, there is a 
possibility of high bias in imputation as majority of data is 
unavailable.  
 

III. RESULTS 

A.  Feature Selection 

Feature selection is done in 2 steps prior to modeling. First, 
through elimination of features that highly correlate with 
each other. Some parameters, usually within the same step 
tend to be highly dependent on each other. They contribute 
less to the model and increase computational cost, which 
makes them not very useful for model building. These 
features are dropped based on correlation coefficient with 
each other. It is important to determine an appropriate 
threshold for the features as dropping too many may reduce 
prediction power of the model. This approach was used by 
M. Meiners and J. Franke in their ML application to sort out 
parameters showing fictitious correlations, with the use of a 
variance inflation factor (in our case, correlation coefficient 
threshold) (4). 

 
Next, an embedded feature selector which uses the Random 
Forest machine learning algorithm is used to further narrow 
down features. The algorithm uses feature importance when 
fitting the data to model and can select features that hold 
high predicting power and output them. 
 
The following table (Table 3) shows model performance 
with varying correlation coefficients used to drop highly 
collinear features, prior to using the embedded feature 
selector. 
 

 

 
As seen in Table 3 above, majority of the features are highly 
correlated with each other, with the number of features 
dropping from 1199 to 331, when a correlation coefficient 
threshold of 0.9 is used. The Percent Absolute Error from 
Response Mean drops, and R-squared increases when more 
features are used. This, however, comes at the expense of 
the Adjusted R-squared which accounts for the dimension 
of the data and the number of observations being used. 
Since using a higher threshold of 0.9 causes a huge 
difference between R-squared and Adjusted R-squared and 
using a lower threshold of 0.5 decreases model 
performance; the threshold of 0.7 is used for feature 
selection. It not only has a higher Adjusted R-squared, but 
the difference from the R-squared value is not very large. 
 

B. Model Building 

Varying machine learning algorithms are tested and 
evaluated for model performance on the final data set. The 
key algorithms used are Random Forest, XGBoost 
Regressor, and Gradient Boost Trees. Other algorithms 
tested were; Kernel Ridge Regression, Lasso Regression, 
and SVR, but they yielded lower performance. Table 4 
shows the performance across the three algorithms. 
 

Table 2: Sample Table of Data Availability and Overlap 

Table 3: Model Comparison with Varying Correlation Coefficient Thresholds 



 

 

 
The Gradient Boost Tree overall performs best on training 
data, showing lowest error and highest R-squared. The 
XGBoost performs least. 
 
Hyperparameter tuning is essential for model building to 
optimize model performance. The data is split into train and 
test data in an 80:20 ratio. The train data has 553 rows and 
34 feature columns, while the test has 139 rows and 34 
feature columns. The rows here represent the wafers. A 
GridSearch algorithm is applied on the train data to find the 
best fit to the model based on hyperparameters such as 
max_depth, min_samples_leaf, min_samples_split, 
n_estimators, and random_state for consistent results. The 
best score outputted is 0.97 with a max_depth of 5, 
min_samples_leaf of 2, n_estimators of 120, and 
random_state of 10. This is then used to build the regression 
model. 
 

 
Figure 12: Feature Importance in Model Algorithm 

The results from the model show a good correlation 
between the features used and DELTA OXIDE THK 
(Table 5). R-squared is 0.83 on test data which shows good 
goodness-to-fit. The adjusted R-squared is 0.78 which can 
be improved by further narrowing down the features used. 
The percent absolute error from mean is 2.44%. The 
threshold set by the SMEs to be a useful model is 10%. This 

model is very much below the threshold which is great for 
usability. There is a slight overfit between the train and test 
result as seen from the error and R-squared. The results 
overall look good on the test which makes it a decent model. 
Figures 10 and 11 below are references for model fit. 

 

 

 

 
 

 

 
 
Further tuning of the model can be done to improve it and 
eliminate overfit. The highest feature importance to the 
model is from the PRE PHOTO SHAPE followed by DRY 
STRIP SEM CD (Figure 12).  
It was anticipated that variation could be coming from 
SHAPE features such as BOW. Correlation plots of top 
feature importance is shown in Figure 13. 
 

Table 4: Table of Results of Predictions with GBT Algorithm 

Figure 10:  Predictions vs Actual 

Figure 11: Fitted Scatter Plot of Predictions vs Actual 

Table 4: Score Card for Comparison of Model Algorithm Performance 
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The majority of the data points are clustered in lower values 
of the PRE PHOTO SHAPE BOW parameter whilst there 
is a slight negative relationship in the STRIP SEM CD 
parameter as the parameter values increase. 
 
The model results above are produced from 34 features. 
Further narrowing down the features to 12 shows very 
similar results to using 324 features with only a slight drop 
in r-squared from 0.83 to 0.81 (Figure 14), and slight drop 
in error (Table 6). The top features come from PRE 
PHOTO SHAPE, BACKSIDE DEP SHAPE, PHOTO 
REG and DRY STRIP SEM CD. Narrowing down features 
further showed a further drop in r-squared and an increase 
in error, hence the minimum number of features used was 
left at 12. An increase in number of features from 34 
features, as shown in the Table 3 yielded a smaller adjusted 
r-squared as the adjusted r-squared is dependent on size of 
data and dimension. The ideal is to obtain optimum results 
with least number of features. 
 

 

Table 5: Table of Model Performance with Top 12 Feature Importance 

 

 
Figure 14: Fitted Scatter Plot of Predicted vs Actual with Top 12 Feature Importance 

Further analysis is done to evaluate how PRE PHOTO 
SHAPE on its own affects the outcome of the DELTA 
OXIDE  THK. Linear correlations show LSC_Data_Mean, 
Bow and Warp features have moderate linear correlation 
with the DELTA OXIDE THK (Figure 15).  

 
Figure 15: Linear Correlation of PRE PHOTO SHAPE Features with 
DELTA OXIDE THK 

The 261 parameters from PRE PHOTO SHAPE are passed 
through the feature selection process described earlier, 
identifying 11 features from the step used for model 
building with results shown in Table 7. 

Figure 13: Fitted Regression Plots with Distribution of Top Feature Importance 
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Table 6: Table of Model Results with  PRE PHOTO SHAPE 

The results show decent ability to predict response with 
error percent at 8.25% which is within the 10% cut off limit. 
The R-squared, however, is weak. SHAPE alone could be a 
good contributor to the DELTA OXIDE THK but the 
drop in performance is an indicator that several factors 
affect the uniformity variation and so SHAPE alone, though 
is within reasonable error range, will need to be combined 
with other good predictors in order to show stronger 
correlation. The 11 features used in PRE PHOTO SHAPE 
and their feature importance is shown in Figures 16 and 17. 

 
Figure 16: Feature Predictors from PRE PHOTO SHAPE and their Feature 
Importance 

 
 

 
Figure 17: Graph of Predicted vs Actual Results with PRE PHOTO SHAPE 

 

IV. CONCLUSION AND FUTURE WORK 
 

Although this report mainly discusses modeling using 
upstream parameters, the DELTA OXIDE THK response 
in POLY CMP is affected by several additional factors, 
including Recipe Process Adjustment (RPA) parameters at 
that step. Modeling with upstream parameters pointed to 
the PRE SHAPE as the highest feature of importance. 
However, the response is affected by multiple steps along 
the process line as shown in Figure 12. Model results from 
using only SHAPE parameters did not yield good 
performance as shown in Table 7 and Figure 17. The R-
squared was weak and percent error was much higher than 
in the multi-step model, despite being within specification 
limit of 10% error. The multi-step model, however, had a 
good R-squared of 0.83 and percent error of 2.44%, which 
were well within specification limits, making it a better 
approach than using a single upstream step. Further 
validation of the model on new data will be essential to 
testing how accurate our model is in predicting new 
DELTA OXIDE THK on new test samples being 
produced. The next step in this project is to determine 
implementation of a combined model, using both the 
upstream step model and the RPA model to predict the 
outcome of DELTA OXIDE THK. This could be achieved 
with a usability ratio, with higher importance given to the 
process model as this is directly connected to the response 
and has a higher correlation to it. 
 The upstream steps model will serve as a feedforward 
controller while the RPA model will serve as a feedback 
controller. Also, an understanding on how to implement a 
R2R model from the combination of RPA and upstream 
step models is needed with suggestions from the CMP 
process owners and subject matter experts. 
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