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INTRODUCTION 
A CMP process’s material removal rate depends on many process parameters, including the applied 

down-pressure, head rotational speed, platen rotational speed, slurry composition, and pad design. 
Preston developed an empirical relationship for the average material removal rate: 

  !               (1) 

where !  is the average material removal rate ! ︎, !  is a process constant ︎! , !  is the  
average relative velocity between the pad and the wafer ! , and !  is the average contact pressure 
(Pa) [1]. 

CMP processes that follow Equation (1) are classified as Prestonian and those which do not are 
classified as non-Prestonian. Since Preston’s early work, researchers have proposed additional material 
removal equations. Castillo-Mejia proposed a generalized version of Equation (1), which incorporates 
non-linearity by exponentiating the relative velocity and the applied down-pressure [2]. The generalized 
Preston’s equation is then: 

  !                (2)  

where !  and !  are fitting parameters. However, Equations (1) and (2) are only useful for 
characterizing the polish of blanket (unpatterned) wafers. Since patterned and unpatterned wafers may 
have differing polish characteristics, it is necessary to expand the analysis techniques to include 
patterned wafers. Castillo-Mejia proposed a locally-relevant Prestonian model, which has the form 

 !              (3) 

Where !  is the local material removal rate, !  is a process constant, !  is the local relative velocity 
between the pad and the wafer, and !  is the local contact pressure [2]. The local relative velocity may be 
calculated analytically [3]. The difficulty is then in calculating the local contact pressures. Castillo-Mejia  
[2] developed a wafer-scale finite element model which predicts the local contact pressures and Lee et al. 
[4,5] developed similar models. However, these models [2,4,5] assume a flat-pad model which do not 
provide a realistic contact area ratio; recent models find that the sparse contact between pad asperities 
and the wafer leads to high contact pressures at the contacting asperity locations and zero pressures 
elsewhere [6].  

We now propose a new method for characterizing the polish of patterned wafers. The model involves 
simulating the contact pressures between a patterned die and a rough pad (whose texture was measured 
from a used pad) using the framework that we previously presented [6]. The previously presented 
framework assumed Prestonian behavior and is now expanded into a technique for determining the 
material removal rate law. 

COMPUTATIONAL MODELING 
To characterize the non-Prestonian process, the contact between the pad (with measured surface 

texture) and die is simulated for many iterations (as shown in Figure 1) until the pressure ratio converges. 
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Fig.1 Diagram showing the model process. For a given process parameter set (down-pressure, head 
rotational speed, platen rotational speed, etc.), simulate the contact between a die and the pad. During 
polishing, the pad and wafer both rotate, causing a change in the contact set. To account for this, the 
contact set is run for multiple (N) iterations. The predicted pressure distributions across the die are then 
averaged across all iterations, to produce ! . !  is then used for characterizing the process’ 
material removal equation (instead of the applied down-pressure). 

The pressure ratio (P.R.) is defined as 

 !               (4) 

where !  is the average pressure in that feature’s trench region and !  is the average 
pressure in that feature’s active region. Upon convergence, the pressures are averaged across all 
iterations, to attain the local pressures ! . Figures 2 and 3 contain plots of the pressure ratio against 
the number of iterations employed. The plots show that convergence is reached within 2000 iterations. In 
Figure 2, the applied down-pressure is varied; as expected, the simulations show that a higher down-
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pressure corresponds with a lower pressure ratio. In Figure 3, the pad’s surface modulus is varied; also 
as expected, softer pads exhibit lower pressure ratios. 

 

Fig.2 Plot of the pressure ratio (calculated on the 200 micron checkerboard features) against the 
simulation iteration number, for various values of the applied down-pressure (psi). 

Fig.3 Plot of the pressure ratio (calculated on the 200 micron checkerboard features) against the 
simulation iteration number, for various values of the pad's surface modulus. 
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RESULTS AND DISCUSSION 
The local pressure distribution !  depends on the die design, pad design, and applied down-

pressure. An example of the local pressure distribution across the die is shown in Figure 4. The pressure 
distribution shows higher pressures at the edges of active regions (stress concentrations) and lower 
pressures at the edges of trench regions (locations where asperities are less likely to reach into). 
Additionally, larger trenches experience higher pressures than smaller trenches, since asperities may 
reach into large trenches more easily.  

Fig.4 Plot of the pressure distribution !  across the die (in Pascals). 

!  can now be used to characterize the process’ material removal law. The process is assumed to 
follow a generalized, localized Prestonian model: 

 !  (5) 

Figure 5 shows a plot of the material removal rate against the local relative velocity raised to the power 
!  multiplied by the local contact pressure raised to the power ! . The regression model shows strong 
agreement with the experimental measurements. 
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Fig.5 Plot of the material removal rate vs localized average pressure times relative velocity. Stars 
represent experimental measurements taken in trench regions and circles represent active regions. The 
blue dashed curve represents a regression model of the form ! , where the best fit 
parameters ! , ! , and ! . 

The identified removal rate law is used within our previously presented die-scale model [6]. Material 
removal is simulated using a time-stepping approach. Figure 6 shows the simulation output. In Figure 6, 
the planarization efficiency is plotted against the feature type. The planarization efficiency is calculated 
using the slope of the secant lines between the experimentally measured oxide thicknesses after 25 
seconds of polishing and the oxide thickness before polishing, within both the active and trench regions. 
The plot shows that the predicted planarization efficiencies have a strong dependence on the feature size, 
with the planarization efficiency decreasing as the feature size increases. This matches the 
experimentally measured trend. For large feature sizes, the simulation under predicts the planarization 
efficiency, suggesting further model improvements are necessary.  
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Fig.6 Plot of the planarization efficiency against the feature type. 

CONCLUSION 
In conclusion, a new method for characterizing the relationship between the material removal rate and 

the local contact pressure for patterned dies is proposed. This method is significant for its use of a 
measured pad topography, which allows for realistic contact pressure estimates. Additional avenues for 
improving our understanding of the CMP process are explored.  
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