Application of hydrogen-reduction to improve ceria slurry performance on chemical mechanical polishing process

Jaewon Lee\(^1\), Eungchul Kim\(^1\), Chulwoo Bae\(^2\) and Taesung Kim\(^{1,2}*\)

\(^1\) School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea, \\
\(^2\) SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, South Korea.

Ceria slurry is widely used in the dielectric CMP (chemical mechanical polishing) process due to its advantages of high polishing performance and selectivity. Ce\(^{3+}\) ions on the ceria surface form a Ce-O-Si bond with the SiO\(_2\) wafer, which contributing to polishing performance [1]. In this study, we increased the Ce\(^{3+}\) concentration by using the hydrogen-reduction method and performed CMP evaluated using the reduced ceria slurry.

Figure 1 shows the process of ceria reduction in a high-temperature hydrogen atmosphere. Hydrogen-reduction begins with the penetration of hydrogen into ceria and adsorption to oxygen to form hydroxyl. The generated hydroxyls react with hydrogen to induce H\(_2\)O molecular desorption, and which generates oxygen vacancies. In this study, we optimized the hydrogen-reduction conditions and evaluated the reduced ceria slurries according to the reduction temperature.

Figure 2 shows the Ce\(^{3+}\) concentration and polishing performance according to the reduction temperature. It was evaluated that the reduction of ceria was not sufficiently performed under a relatively low temperature condition. The hydrogen-reduction reaction increased significantly with a constant temperature, and the same tendency was observed in the polishing performance. Based on the above, it was evaluated that the concentration of Ce\(^{3+}\) increased as the reduction temperature increased, and which had a direct effect on the increase of polishing performance.

Reference

Corresponding Author:
Taesung Kim
Tel: +82-31-290-7466
E-mail: tkim@skku.edu
School of Mechanical Engineering, Sungkyunkwan University Suwon, Gyeonggi-do 16419, Korea

Preference: ■ Oral □ Poster

Topic Area: Consumable, equipment, and metrology