Advanced CMP Cleaning Solutions

Surfactants, Metal Inhibitors, Oxygen Scavengers & Particle Removers

By

Geoffrey Yuxin Hu Brizon Inc

Brizon

Contents

- Challenges of CMP Cleaning
- ➢ Background and Principles of CMP Cleaning
- > New Concepts in CMP Cleaning
- > Fab Experimental Results
- > Summary

Challenges of CMP Cleaning Solution

Multiple materials in Dynamical CMP Systems

- > Trace metals and ions: Cu, W, Ni, Fe, Ru, Ti, Cr, etc
- > Dielectric material: SiO_2 , Al_2O_3 , etc
- Slurry residuals: PSD, MOx
- Organic polymer materials

Cleaning Mechanism for Different Materials

- > Cleaning chemistry vs. CMP chemistry; pH, corrosion & inhibitors
- Metal surface cleaning
- Dielectric surface cleaning
- > Wafer surface topography, structures, macro & micro-scratching
- Cleaning Tool and Cleaning Functions
 - > Different tools, masonic, rinsibility & dry methods
- Wafer Quality, CMP Process Performance
 - > Wafer aging, CMP process performance & recontamination
 - > Partial dried wafers & wafer surface slurry residual pre-treated

Challenges of CMP Cleaning Solution

	4 +2 Bo]										5 +3 B		7 -3 N	8 -2	⁹ -'	2 He helium 4.003
Li lithium	Be beryllium											D boron	carbon	N nitrogen	O oxygen	F fluorine	Ne
6.968	9.012											10.81	12.01	14.01	16.00	19.00	20.18
+1	12 +2											13 +3	14 -4	15 –₃	16 -2	17 -1	18
Na	Mg	3 III B	4 IV B	5 V B	6 VI B	7 VII B	8 VIII B	9 VIII B	10 VIII B	11 I B	12 II B	AI	Si	Р	S	CI	Ar
sodium 22.99	magnesium 24.31		N D	٧D	VID	VIID	VIII D	VIII D		1D	пD	aluminum 26.98	silicon 28.09	phosphorus 30.97	sulfur 32.07	chlorine 35.45	argon 39.95
		21 +3	22 +4,3,2	23 +5,2,3,4	24 +3,2,6	25 +2,3,4,6,7	26 +3.2	27 +2,3	28 +2,3	29 +2,1	30 +2		32 +4,2				39.90 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
+1	38 +2	39 +3	40 +4	41 +5,3	42 +6,3,5	43 +7,4,6	44 +4,3,6,8	45 +3,4,6	46 +2,4	47 +1	48 +2	49 +3	50 +4,2	51 +3,5	52 -2	53 -1	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.47	87.62	88.91	91.22 72 +4	92.91	95.95	98	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3 86
	_				74 +6,4									83 +3,5			
Cs	Ba	LU	Hf hafnium	Ta tantalum	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
cesium 132.9	barium 137.3	175.0	178.5	180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium 209	astatine 210	radon 222
			104	105	106	107	108	109	110		112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
francium	radium	lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgentium	copernicum	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
	1	1	1	1								1					1

Related Materia AlOx SiOx W Al MOx Polymers SiN TiN Redep

Briz•n

Key Issues of Cleaning Chemistry

□ Unbalance of Hydrophilic/Hydrophobic of Surfactants

- Poor vehicle of slurry
 - Poor uniformity of slurry across pad
- \blacktriangleright Poor surface modification of particles, such as SiO₂, CeO₂
 - -Agglomeration of particles
 - -Wide distribution of particles macro and micro-scratching
- \blacktriangleright Residual slurry particles, Al₂O₃, colloidal SiO₂ and CeO₂
- Cleaning residual of BTA in Slurry

□ Incompatible of Metal Inhibitors/Oxygen Scavengers

- Non-uniformity of particle dispersion in solution
 - -Corrosion of metal, Cu, and W
 - -Recontamination
- > Aggressive chemicals, high or low pH
 - -Corrosion
 - -Macro or micro-scratching
 - -Poor rinsibility

Cleaning Fundamentals

Cleaning Mechanism

- Hydrophilic/Hydrophobic balance
- \succ Surface tension

□ Metal Cleaning with Inhabitors (BTA)

- Better removing particle
- Corrosion on metal
- ➢ pH range

□ Classic Non-ionic Surfactants (NIS)

- Removing particles
- Removing Organic Contaminations
- □ Ionic Surfactants (IS)
 - Aliphatic phosphorous surfactants
 - Metal surface protection
- □ Chelating/Complex Chemicals
 - Cleaning/removing metal ions and oxides

New Cleaning Concepts

Surfactanized Metal Inhibitors with Cleaning Functions

Surfactanized Metal Inhibitors

- Hydrophilic metal inhibitor on one side
- Short aliphatic hydrophobic tail
- Maximized protection on metals: Cu, W, Ru, Ni, Fe

Surfactanized Oxygen Scavengers

- Long ethoxylated hydrophilic tail
- Hydrophobic oxygen scavenger
- > Max scavenged oxygen throughout CMP process

Special Surfactants

- Ethoxylated hydrophilic tail
- > Short hydrophobic chain with chelating agent
 - Much better vehicle
 - No **amines (TMAH**) compounds

Briteclean System – How does it work?

Briteclean System pH Control and Application Conditions

	Briteclean - 0/Plus	Briteclean - 1	Briteclean-ACP
Pre/Post Cleaning Process	VES	YES	YES
Slurry Additives	YES	YES	YES
Storage/Buffer	NO	NO	YES
Application	Need to mixing with BC-1 or BC-ACP	Need to mixing with BC-0/plus	Solely
Usage	1% - 5%	1% - 5%	1% - 4%

Recommendation: BC-0plus/BC-1 = 1:1; Diluted to 1%-2% with DI water

Process Conditions:

- CMP Tool (8inch): Applied Mirra; Ebara; 6DSSP(Strausbaugh)
- Slurry: Cabot MH8xx system; ASL system
- Pad applied: IC1000; Sub IV
- Cleaning Tool: DNS, SSEC
- Cleaning solution: Briteclean-1; Briteclean-0plus
 - Mixed: Ratio 1:1 in 1.0% ~2% Aqueous media
- Wafer: Cu, W, TiN, TaN, Ni, Fe, Low key, SiOx, Al₂O₃, Ru, etc.

Briteclean-Ultra: pH~9.5 Briteclean-3D: pH~5.0

Metal and Cl Elements Content in Briteclean products

Metal Elements (ppb)	Briteclean-0+	Briteclean-1	Briteclean-ACP
Fe	<20	22	53
Cu	28	<5	25
Ni	18	<5	<5
Zn	<5	<5	<5
Pb	<5	<5	<5
Cr	<4	<4	5
Mn	<5	<5	<5
Со	<5	<5	<5
AS	<25	<25	<25
V	<25	<25	<25
Al	<20	32	25
Ti	<20	<20	<20
Mg	<20	<20	<20
Cl	<20	<20	<20

1: Cu, Ni, Zn, Ti, Pb, Mn, Co, V, As were analyzed by EPA Method 200.8 on an ICP-MS (Perkin Elmer DRC-e)

2: Fe, Al, Cr were analyzed by EPA Method 200.7 on an ICP-OES (Thermo iCAP 6300 DV)

3: CI was analyzed by EPA Method 300.0 on an IC (Metrohm 850)

Note 1: ICP-MS Analysis

2: "<" means below detection limit

Corrosion Test – Cu Wafer

Testing Instrument

- Solution Fixture
- Std Corrosion testing Cell
- Solartro Electrochemical
- Corrosion testing interface

Cu Wafer

Corrosion Test Outputs

≻Tafel/Linear Polarization – Corrosion Rate Measurements

- ➢Galvanic Corrosion Current Measurements
- Electrochemical Impedance Spectroscopy
- >Corrosion Rate Measurements under Abration

Corrosion Testing Results – Cu Wafer

Solution	OCV (vs SCE)	RP (Wcm2) (from linear)	io (A/cm2)	ERR (Angstrom/mi n)
DI H2O	-0.0614	10.8	4.18E-06	0.9236
Best Competitor	-0.242	2135	1.22E-05	2.6845
Another Competitive	-0.294	685	3.76E-05	8.302
Briteclean-0+ /Briteclean-1 = 1:1 2% aqueous	0.1017	3645	7.05E-09	0.0016
Briteclean-0+ /Briteclean-ACP =1:1 2% aqueous	0.1585	2180	1.20E-08	0.0026

Corrosion Testing Results BC-0plus, BC-1 and BC-Ultra on Cu, TiN, TaN and W Wafer

Brizon

Briteclean System – Applications

□ Briteclean products are qualified on 7 Major US fab lines

- **D** Particle Reduction
 - > BC cleaning system showed better particle count reduction
 - **BC** cleaning system showed >40% particle reduction on device production wafers

Principle of Slurry Additive for CMP Applications

- Slurry distribution on polishing pads is a critical factor to achieve better WIW uniformity
- Adding Brizon products into CMP slurries, the slurry surface extension with IC series CMP pads was modified to a form a uniformed slurry layer across the whole wafer

Brizon

Surf-Clean Imaging For Competitor's Clean Solution

Alumina

Post-Treatment

Briz•n

Briz•n

Different Slurry Cleanability of Briteclean vs Competitor's

BriteClean mixed Solution								
	Alumina	Cu						
Con-1	-70	-66						
Con-2	-22	-340						
Со	Competitor's Cleaning Solution							
	Alumina	Cu						
Con-1	190	280						
Con-2	1571	370						

Different Method Cleanability of BriteClean vs Competitor's

BriteClean mixed Solution							
	Alumina	Cu					
Roller	10	24					
Pencil	-10	-6					
Competitor's Cleaning Solution							
	Alumina	Cu					
Roller	318	2985					
Pencil	190	280					

Average Particle counts for Briteclean Products on Cu Surface

Briteclean Products	AIOx	SiOx
Briteclean-0	-20	-6
Briteclean-0+	-30	-20
Briteclean-3D	-73	-56
Briteclean-Ultra	-154	-137

Note: Mixed with BC-1, 1:1 ratio (5%:5% in DI H2O), on Pencil tool

Principle of Cleaning Process for CMP Applications

- Slurry: Dissolved/Dispersed into Advanced Nonionic Surfactants, Slurry Chemistry
- Trace Metals:
 Dispersed into Advanced Nonionic Surfactants
- Metal lons:
 Complex to Chelate in the Cleaning System
- Aggressive
 Corrosive
 High/Low pH:

Briteclean System – Applications

Gamma Surface Quality improved

- Prevent AIO_x wafer surface without pitting with BC products
- Metal surface improved

Full AIO_x film pitting – long time in DI water

No film pitting – x2 time in DI water + Briteclean

Briteclean System – Applications Sensor Circuit Measurement

- Sensor dimension was designed per different usages.
- 4-point scheme minimizes contact resistance during probing

Briteclean System – Applications Sensitivity Measurement Trend Chart

Bivariate Fit of Sensor Sensitivity By Probe time 3.25 3.2 3.15 Sensor Sensitivity 3.1 3 3.05 3. . **Competitor's products** Briteclean products 2.95-06/23/2013-04/28/2013-05/05/2013-05/12/2013-05/19/2013-05/26/2013-06/02/2013-06/09/2013-06/16/2013-06/30/2013-07/07/2013-07/14/2013-07/21/2013-07/28/2013-

Probe time

Briz•n

24

Summary

- Briteclean Products use a new surfactanized metal inhibitor and anti-oxidant cleaning approach
- Cleans major metal surfaces, dielectrics materials, slurry & photo residues with one solution
- Highly efficient cleaning with significant particle reduction and better surface quality
- **□** Easier to handle and simpler process on all tools
- □ Briteclean products in daily use on many fab lines for over 9 years
- □ Other advanced cleaning products also available

