Removal Rate Modeling with the Shear Force Law

Len Borucki (ret.), Yasa Sampurno, Ara Philipossian
Araca Inc.
December 1, 2022
Polisher and Experiment

Araca APD-800 Polisher and Tribometer
Measures shear and normal forces on the wafer.

The Experiment
300 mm blanket Cu wafers
3p x 3V:
 p: 1, 1.5, 2 PSI
 V: 1.2, 1.5, 1.8 m/s
Slurry: PL-7106 w/0.03% H₂O₂ @ 250 ml/min
Pad: IC1000 k-groove
Dresser: 3M A165
Time: 60 sec
Preston Plot of the Removal Rate

Mean removal rates in this experiment do not follow Preston’s Law: \(RR = c_p pV \).

How can we make sense of these measurements?
Removal Rate vs. Shear Force/Wafer Area

We start with something more basic than Preston’s Law: No CMP tool can remove material mechanically without applying a shear force to the wafer.

\[\text{COF} \cdot \rho = \frac{\text{Mean Shear Force}}{\text{Wafer Area}} \]
Removal Rate vs. Shear Force/Wafer Area

The data fall on/near lines that radiate from a point on the RR axis that are indexed by speed. This is not an accident – it happens in every experiment we have examined.

Shear Force Law

\[RR = RR_0 + c_p(V) \cdot COF \cdot p \]

Baseline Removal Rate

Not a static etch rate
The Slope Function $c_p(V)$

In addition to the slopes corresponding to the three experimental conditions, we know with certainty that $c_p(V)$ has to pass through the origin. This is insured by the second factor of V below.

$c_p(V)$ also passes through the origin since *there is no mechanical removal at any pressure if $V = 0$.*

$$c_p(V) = (\alpha + \beta \cdot V) \cdot V$$
Removal Rate vs. pV

Since the data are close to the radiating lines, the shear force model is close to the data ... but, it doesn’t provide any more insight into why the data are this way. The key is the COF.

This equivalence also occurs in Preston’s Law, except it involves only one line instead of a group of radiating lines.
The COF, plotted against V/p, follows a Striebeck lubrication curve. V/p is a factor of the Sommerfeld number, which arises by nondimensionalizing the Reynolds equation for fluid flow.

The Sommerfeld Number is defined as:

$$\text{Sommerfeld Number} = \frac{\mu_0 V}{\delta_0 p} \equiv b \frac{V}{p}$$

And the COF is given by:

$$\text{COF} = \frac{C_0}{\left(b \cdot \frac{V}{p}\right)^a + 1}$$

Since the viscosity is a multiple of 10^{-3}Pa-s, it follows from b that δ_0 is on the order of a micron, about the mean size of a pad summit/wafer contact. Since the pad is grooved, lubrication in this case refers to a state in which fluid penetrating into a contact develops enough pressure to partly support the load, producing a reduction in shear force and COF.
The Removal Rate Near the Experimental Space

\[RR = RR_0 + c_p(V) \cdot COF(V/p) \cdot p \]

The RR data have the same concavity as the corresponding points on the Stribeck curve. The arrangement of points is a lubrication effect.
The Removal Rate Near the Experimental Space

The points in the convex hull of the data all lie in the mixed lubrication part of the Striebeck curve where there is plenty of data. The interpolation in this region is reliable.
The Removal Rate Near the Experimental Space

The reliability of the extrapolations in the indicated areas depends on how well the Stribeck model represents the boundary and hydro regions of the curve.
The model predicts a pressure threshold for shear force removal. At the given speeds, this is just the minimum p needed to overcome summit/wafer/lubrication and begin engaging in solid/solid contact.
Baseline Removal Rate RR_0 and Contact Area

Archival Experiment: 300 mm Cu polished on D100 using PL-7106 to test conditioners. Pad samples were taken and contact area measured @ 2 PSI by confocal microscopy.

$RR_0 = 226 + 1442 \times A$

Conclusion: RR_0 is related to contact area.

Hypothesis: Pad fragments cause it.
Large Contact Areas = Compliant Pad Fragments

Archival Data: Broken pore walls can produce very large contact areas.
Compliant Fragments Under Pressure

Archival Data: Eight 425x425 \(\mu\text{m}^2\) contact images, 4 pressures.

Large pad fragments in some of the images explain why the mean contact area does not project to 0 when \(p \to 0\). The smaller contact areas do go to 0.

Images with some large fragments.

Smaller areas, no large fragments.
The pad fragment contribution to RR shows up as the projection to $p=0$.

Compliant pad fragments contribute to RR almost equally since they produce large contacts with very little pressure, suggesting that removal by particles in the contacts is less abrasive than chemical.
The Slope Function $c_p(V)$

What, exactly, does it do? For the Cu example, it is linear, but for dual purpose slurries, it has some interesting behaviors. This is a W buff slurry, applied under exactly the same conditions to W and ILD blanket wafers.

This suggests that there is a mechanism that decelerates oxide removal while simultaneously accelerating W removal.
The Slope Function $c_p(V)$

These functions are from identical experiments using an STI slurry that removes oxide and stops on nitride. The model makes a prediction about what will happen for higher V. Is it real, or is it an artifact of using a quadratic fitting function?
More on the Slope Function $c_p(V)$

The prediction is qualitatively confirmed by a separate experiment using the same consumables. The trend is not an artifact.
What is Good about the Shear Force Law?

Generalizes Preston’s Law (when the COF is constant and $c_p(V)$ is linear)

Based on simple mechanics ($RR \propto$ shear force) and well-established lubrication theory, which should both be universal.

When it is possible to construct a Strubeck curve, provides clarity about the “why” of some measurements and makes reasonable removal rate predictions.

Useful framework for investigating phenomena and integrating various bits of knowledge:

- Defines a place for pad summit fluid lubrication and contact mechanics in CMP.
- Provides some information about chemistry or slurry particle action.
- Led to an explanation of “static etch rate” ($RR_0 =$ compliant pad fragments).
- Elucidates what causes pressure thresholds (one shown – there is another!).

Successfully applied to 28 experiments so far (4 materials, 5 slurries, 3 pad types, many conditioner designs).

More information? Contact lborucki@aracainc.com
Supplementary Slides
Shear Force Law Removal Rate Model Summary

\[RR = RR_0 + c_p(V) \cdot COF(V/p) \cdot p \]

\[c_p(V) = (\alpha + \beta \cdot V) \cdot V \]

\[COF(V/p) = \frac{C_0}{\left(b \cdot \frac{V}{p}\right)^a + 1} \]

\(RR_0 \) is the baseline removal rate, the common intercept in a plot of \(RR \) vs. \(COFp \). When \(RR_0 < 0 \), the horizontal axis intercept is a removal rate shear force threshold.

\(c_p(V) \) is the slope function, an empirical fit to the slopes of the rays in the \(RR \) vs. \(COFp \) plot that also passes through the origin.

\(COF(V/p) \) is an empirical fit to Striebeck data. It describes the balance between solid/solid contact and lubrication in summit/wafer contacts. It is the fluid-dynamic part of the theory.

\(C_0 \) is the limiting COF at very low speed or very high pressure.

\(b \) is the ratio of the dynamic viscosity to a length scale, \(\mu_0/\delta_0 \).

\(a \) is related to the slope at the solid vs. lubricated balance point: \(\text{slope} = -abC_0/4 \).
The Mean Wafer COF

The COF has some interesting behavior in the example. It increases with pressure and decreases with speed as you might expect. But the COF is also low (0.075) at 1.14 PSI and 1.8 m/s and has a 7x range. This graph is a good way to understand it but not the best way to model it.
Lubrication of a Real Contact

This is an image of a contact produced by the 4S conditioner, which seems to have trimmed an exposed pore wall.
Lubrication of a Real Contact

Hydrodynamic pressure supports part of the load. Shear force is very low in this area.

Hydro pressure is not high enough to support the load here. Shear force is high due to solid/solid contact.

Flow Direction

In this lubrication example, the measured contact is in the mixed mode at about 0.4 m/s.

\[V = 0.405000 \text{ m/sec} \]
Contact AreaComparison: 4S vs. CVD4

Compared with 4S, CVD4 has fewer small contact areas and more large contact areas, as can be seen from the shift to the right in the histograms on this slide and the next. The contact area axis is logarithmic, so there is much more area in this direction.
Contact Area Comparison: 4S vs. CVD4
Confocal Microscope Contact Area Measurement Fixture

Window mount accommodates a 0.5 mm thick, 0.5” diameter sapphire window for a 20 X objective.

Load is applied through the bottom of a load cell using a spring-loaded screw. Sample sits on a stage that contacts the cell but is free to pivot. The sample is pressed flat against the window for imaging.