

Trends with Sustainability and Emerging Developments in Wet and Dry Processes

NCC AVS User Group Meeting

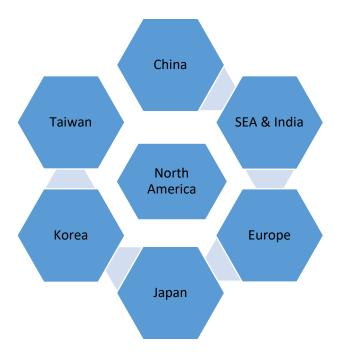
December 1, 2022

Mike Corbett

mcorbett@linx-consulting.com

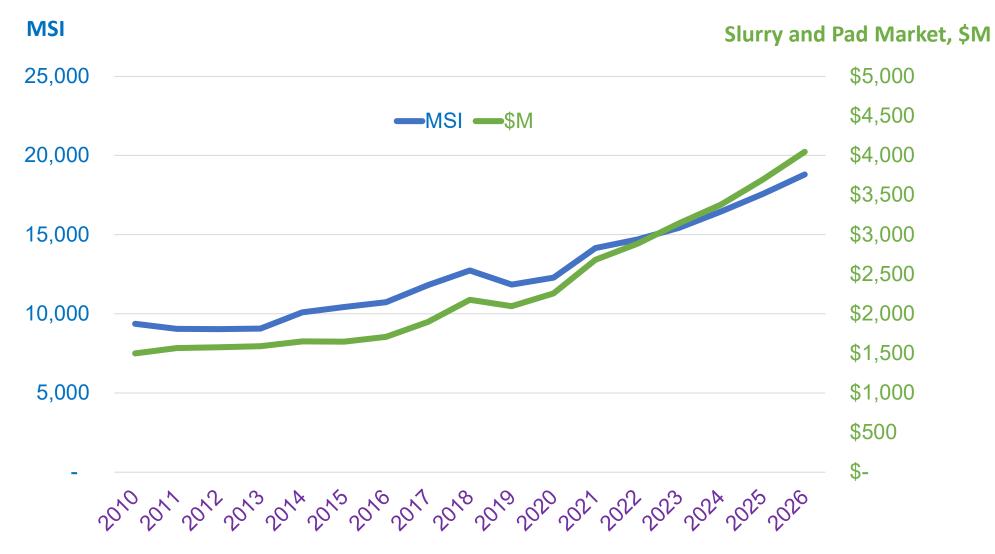
Agenda

- Intro to Linx Consulting
- Review of SPCC and ESG Conferences
- Overlap of Wet and Dry Processes
- Perspectives on the Development and Implementation of Sustainable Processes in the Semiconductor Industry


Linx Consulting

Linx Consulting

- 1. We help our clients to succeed by creating knowledge and developing unique insights at the intersection of electronic thin film processes and the chemicals industry on a global basis
- 2. The knowledge is based on a core understanding of the semiconductor device technology; manufacturing processes and roadmaps; and the global structural industry dynamics
- *3. This knowledge is leveraged to create advanced models, simulations and real-world forecasts*
- 4. Our perspectives are by direct research and leveraging our extensive experience throughout the global industry value chain



 Multi-Client Reports IC Materials CMP / Abrasives Deposition / ALE Patterning Materials Cleaning Electronic Gases Bulk Chemicals Forecast services 	 Proprietary Projects Market & Strategic Planning M & A Services Growth and Diversification Supply Chain Optimization Technology Commercialization Strategic Planning Scenario Planning Voice of the Customer
 Econometric Semiconductor Forecast Financial planning Sales and Operational planning Forecasting 	 Cost Modeling Client demand modeling Product development Bill of Materials quantification
 Semi Technology Conferences The Business of Cleans & SPCC Electronic Specialty Gas Conference 	 Wafer Demand Forecasting Regional Forecasting

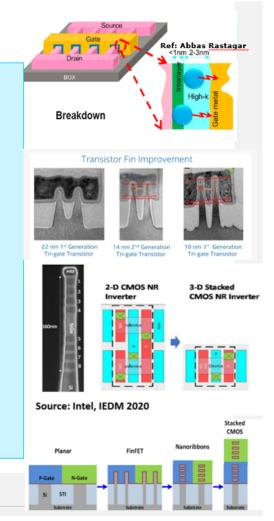
CMP Consumables Will Grow Above MSI

CMP Markets & Technologies 2021 External Disclosure Not Permitted

24th Edition

Surface Preparation and Cleaning Conference

17-18 October, 2022 Chandler, AZ


Intel Keynote on Defectivity Trends

@Intel 2022

Critical Defect Trend

Global Sourcing for Equipment & Materials

- Special cleaning formulations, increase # of damage-free cleaning (High aspect ratio structures), precision of patterning and cleaning, unprecedented etch selectivity with atomic level of etch control, more CMP steps, Particle control in ALD, high K deposition/Cleaning challenge
- Role of <<5nm conductive particle for complex topography of advanced 3D gate stack integrity and device reliability</p>
- > Poor signal to noise ratio (SNR) of localized information
- ➤ HVM EUV towards High NA Readiness: Print even smaller features on Si → 2025
- Key Measurement and Metrology challenge: Detection and Measurement of <<10nm SEVD process adders and interfacial defects/films (multiple stacks)

W PCMP

THE SURFACE PREPARATION AND CLEANING CONFERENCE (SPCC)

SPCC 2022 October 17-18, 2022

Ti ion contamination and removal mechanism during the W CMP process

Palwasha Jalalzai¹, Ranjith Punathil Meethal¹, Sumit Kumar¹, Tae-Gon Kim², Wonseob Cho³, Andreas Klipp⁴, Jin-Goo Park^{1*}

¹ Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea

² Department of Smart Convergence Engineering, Hanyang University ERICA, Ansan 15588, Korea,
 ³ Electronic Material R&D Center Asia, BASF, Suwon, 16419, Republic of Korea
 ⁴ BASF SE, Ludwigshafen, 67056, Germany

The Engine of Korea

*jgpark@hanyang.ac.kr

PVA Brush Defects

THE SURFACE PREPARATION AND CLEANING CONFERENCE (SPCC)

SPCC 2022 Wild Horse Pass, Chandler, AZ, USA October 17-18, 2022

Characterization of impurities from incoming PVA brush for sub 10 nm post CMP cleaning process

October 17, 2022

Kwang-Min Han¹, Suprakash Samanta², Jerome Peter², and Jin-Goo Park^{2,*}

¹Department of Bio-Nano Technology and ²Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea

*jgpark@hanyang.ac.kr

The Engine of Korea

IMEC Backside Thinning

Extreme Silicon Thinning For Back Side Power Delivery Network Application: Need For a Highly Selective Alkaline Silicon Etch Stopping On SiGe Etch Stop Layer

Farid Sebaai¹, Roger Loo¹, Anne Jourdain¹, Kurt Wostyn¹, Eric Beyne¹

¹ IMEC vzw, Kapeldreef 75, B-3001 Heverlee, Belgium

Welcome

00000000

4th Electronics Specialty Gas Conference

111 1 111

Business Interface Conference

October 19 - 21

ELECTRONICS KLAE (DUPONT)

Sponsors

SCREEN

HUNTSMAN

Enriching lives through innovation

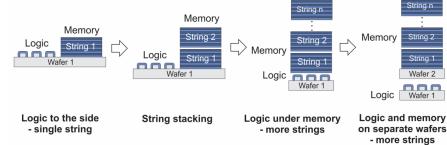
Sponsors

Business Interface Conference & Market Overlap of Wet and Dry Processes

Time	Title	Speaker
8:40 AM	Keynote Speaker: Semiconductor Technology Roadmap – Dry and Wet Tension Points	Scotten Jones IC Knowledge
9:20 AM	Is the Economy in Recession? And Does It Matter for Semiconductors?	Duncan Meldrum Hilltop Economics
9:50 AM	NIST Activities in the Semiconductor Agency	James Maslar NIST
10:10 AM	Semiconductor Industry Growth and Opportunities in Greater Phoenix	Chris Camacho Greater Phoenix Economic Council
10:30 AM	Break	
11:00 AM	Review of Gases and Chemicals by Process Module	David Maloney Linx Consulting
11:30 AM	Wet vs. Dry Processing Challenges for Advanced Transistors	Trace Hurd Tokyo Electron
12:00 PM	Strategies for Targeted Contaminants Removal in Gas and Liquid Filtration	Jad Jaber Entergris
12:30 PM	Lunch	

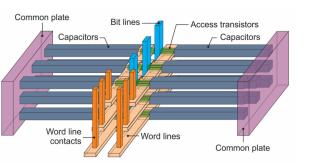
Sustainability Within The Semiconductor Industry

Time	Title	Speaker
1:30 PM	Introduction to the Sustainability Session	Mike Corbett Linx Consulting
1:45 PM	Keynote Speaker: Net-Zero Semiconductor Manufacturing in the Future	Suresh Ramarajan Micron
2:30 PM	Panel Discussion: Sustainability	Moderator: James Amano – SEMI Panelist: Taimur Burki – Intel Tracey Christiansen - Entegris Benjamin Gross – Applied Materials
3:45 PM	Break	
4:15 PM	ESG Sustainability via Materials Innovation and Process Improvement	James Nehlsen EMD Electronics
4:45 PM	Toward Sustainable Fab: Reducing Bulk Chemicals by SPM Reuse in Single-Wafer Process Applications	Jim Snow Screen
5:15 PM	Closing Remarks - End of Wednesday Sessions	Mike Corbett


ICKnowledge Roadmaps

3D NAND Evolution

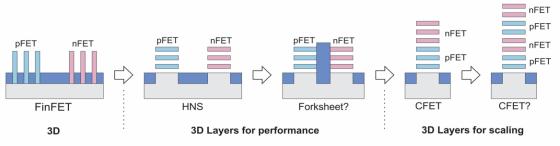
IC KNOWLEDGE LLC


IC KNOWLEDGE LLC

- 3D NAND layers likely to continue to increase to around 1,000 layers.
- String stacking controls aspect ratio by splitting up the layers into strings.
- Logic under the array improves scaling but presents process challenges.
- Long term the logic and memory will likely be on separate wafers for process simplicity and yield reasons.

3D Stacked DRAM

- Stacked horizontal capacitors.
- Memory array and peripheral logic likely to be on separate bonded wafers.
- Vertical pitch ~80nm with ~100 layers needed for density = ~8,000nm stack of epitaxially deposited single crystal Si/SiGe (SiGe is a sacrificial film).
- Vertical bit line.
- Stair step word line that surrounds the access transistor (GAA).
- No EUV



3D DRAM Memory Array

Logic Evolution

- FinFETs are 3D but not layer based.
- Horizontal Nano-Sheets (HNS) use layers for performance. HNS may evolve to Forksheets for density but only Imec appears to be pursuing it.
- Complimentary FETs (CFETs) use layers for scaling. Two device stacks are clearly on the roadmaps at major logic providers, three, four or more device stacks are being evaluated.

TEL – Wet & Dry Approaches

Future Challenges

- Growing the Tool Kit
 - Selectivity requirements among Si based films will continue to increase
 - New gases and gas mixtures will be needed
 - Optimizing speed, cost, and selectivity could open new applications in 3D Memory
- Metal and Metal Containing Film Etches
- Cu, Co, Ru partial etches for FSAV integration
- Mo, W etches for 3D memory enablement
- 2D Material Compatibility
- Thermal Atomic Layer Etching
- Research ongoing at numerous universities, e.g. Colorado, NC State...

Trace Q. Hurd PhD / Tokyo Electron America / October 19, 2022

TEL. 19

Conclusions

- Device Technology Roadmap 3D Trends Driving Significant Challenges
- High Aspect Ratio Structures
- Confined Space Processing / Hidden Surfaces
- Increase in Risk of Pattern Collapse
- Multi-Film Selectivity Requirements Increasing
- Isotropic Gas Phase Etch Processes Address Many of These Challenges
- Elimination of capillary forces, atomic scale precision, high reactant mobility, little to no pattern loading, morphological control
- Applications for Isotropic Gas Phase Processing Expected to Grow in both Logic and Memory

Challenges - Dry vs Wet Etching

Dry

Horizontal-direction etch

 The anisotropic nature of gas phase etching reaction make lateral etch difficult to control

Damage

 Ionized molecules generated by RF power during plasma reaction can damage the underlying substrates

Selectivity

 Compared to liquid phase processes, gas phase processes can't effectively accommodate sophisticated chemistries to address selectivity requirements

• EHS

 Many dry etch chemistries rely on greenhouse gases (CF₄, SF₆...)

Wet

Etch profile management

• Wet etch is an isotropic process. Difficult to maintain straight vertical post-etch shape through precise control

• Post drying

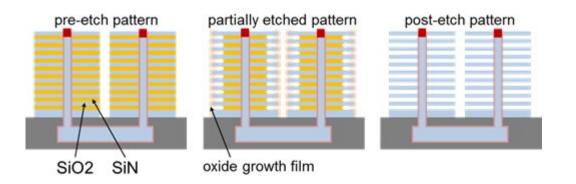
• The post clean step after wet etch requires IPA drying, which can cause patterned structures to collapse

High Aspect Ratio

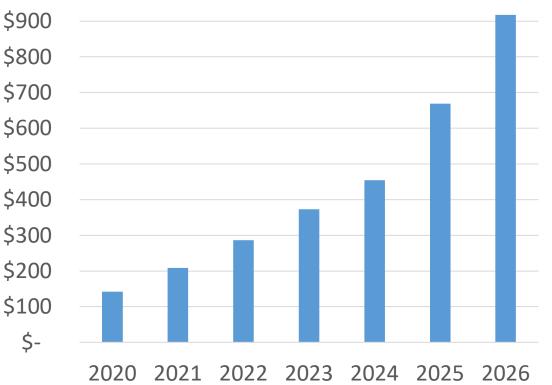
• Wet etchant is unable to penetrate small dimensions at the bottoms of high aspect-ratio structures

Throughput

• Some wet etch applications like H₃PO₄-based nitride etch take several hours and become bottleneck in the fab

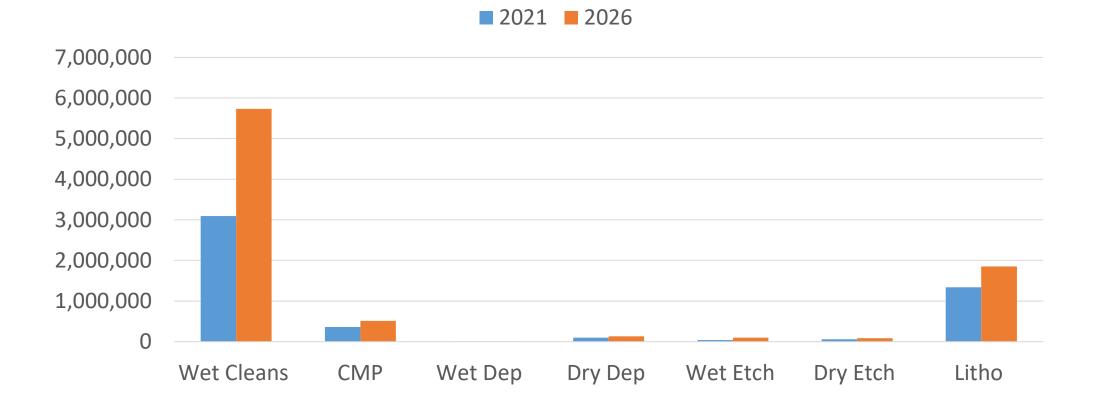

• EHS

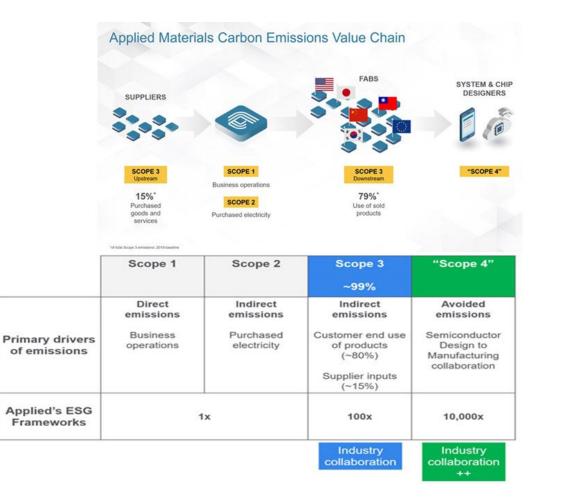
 Disposal cost of waste wet process streams continue to go up www.linx-consulting.com


High-Selectivity Nitride Etch

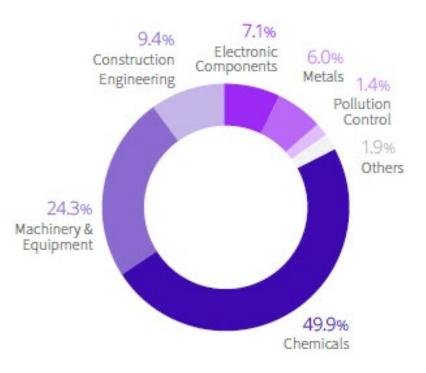
Nitride Strip and Cell Formation

- A slot mask is applied and etched down through the stack. A wet etch is used to etch out the nitride layers that are then replaced with aluminum oxide and titanium nitride memory cell films and then the horizontal layers are filled with tungsten. The tungsten is etched back in the slot, oxide is deposited, and the trench is filled with tungsten.
- Nitride strip in charge trap still remains a challenge. New chemistries are required. This is getting more difficult as the number of layers and HAR increases.


\$ Million \$1,000 \$900 \$800

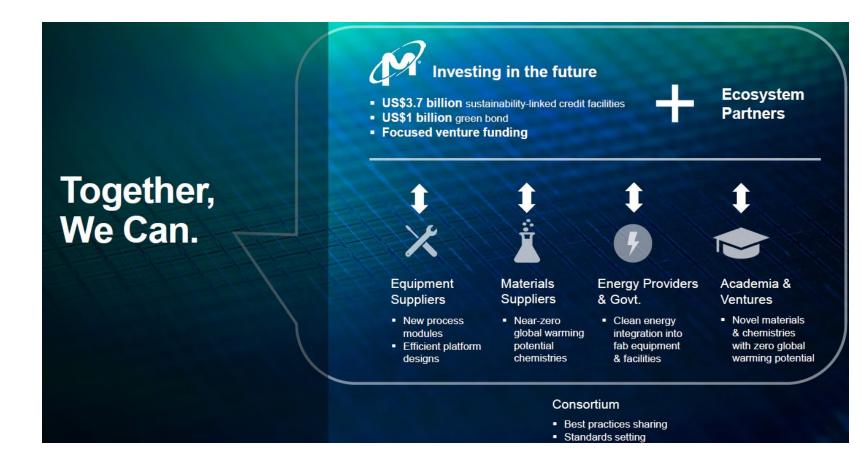

Chemical Volume by Process (MT), 2021 & 2026

Sustainability – Major Focus on the Uses of Chemicals in Fabs



OEM PERSPECTIVE

SEMI PRODUCER PERSPECTIVE


Environmental Hotspot Analysis of the Supply Chain

Micron Perspectives

- Process GHG Decarbonization Preferred Innovations
 - 1. Eliminate / Replace
 - 2. Reduce / Reuse
 - 3. Destroy
 - 4. Data Visibility / Smart Controls
- Heat Transfer Fluid
 Decarbonization
- Fuel Decarbonization
- Energy Decarbonization

Screen & EMD – Pathways to Sustainability

Low CoM Through SPM Reuse SCREEN Chemical consumption data **Test Condition** 300 SPM-1 250 1. SPM-1/No reclaim Consumption mL/wafer SPM mixing ratio : 2:1, 30sec New SPM 200 150 2. New SPM SPM mixing ratio : Y:1, 30sec With Reclaim 50 SPM H2SO4 H2O2

SCREEN Semiconductor Solutions Co., Ltd.

SCREEN Semiconductor Solutions Co., Ltd

SPE-221003152443464-L1

Keys to Sustainability Reducing Emissions with Chemistry

Abatement

 Minimize formation of highly stable molecules during process to improve DRE and reduce secondary emissions

Process Recipe Tuning

Optimize for low generation of high-GWP species like CF₄

New Materials

 Can be tailored to specific applications to reduce process emissions by >90% while maintaining or improving performance

12 ESG Conference | Oct 2022

Sustainable Etch & Clean

Achievable through multiple pathways while driving capabilities forward

Conclusions

- Vertical scaling bring many challenges
- Many tension points still exist between wet and dry processing
- These tension points may cause inflections on how devices are manufactured, integration approaches and materials
- Sustainability is a major industry driver
- Materials are a target for sustainability initiatives; all process modules will be impacted

More Information

Mike Corbett +1 973 698 2331 <u>mcorbett@linx-consulting.com</u>

www.linx-consulting.com

Conference presentations from 2016 to 2019 are posted and available for CMPUG members to review at:

https://www.linx-consulting.com/technical-archive/.