HORIBA Scientific Particle Characterization

Exploiting Fluorescence for Enhanced Nanoparticle Tracking Analysis of CMP Slurries

Jeffrey Bodycomb, Ph.D.

October, 2021

Background – SEMI Standards

Semi standards do not list FCS or NTA on the list of techniques for particle size...

However, they do acknowledge the needs for improved particle metrology as semiconductor technology advances.

SEMI C98-1219

GUIDE FOR CHEMICAL MECHANICAL PLANARIZATION (CMP) PARTICLE SIZE DISTRIBUTION (PSD) MEASUREMENT AND REPORTING USED IN SEMICONDUCTOR MANUFACTURING

"Response to Semiconductor Technology Advances

As node sizes continue to decrease, new requirements for CMP PSD are becoming increasingly important.

- As CMP slurries move towards smaller particle sizes more nano-size sensitive PSD metrologies are needed.
- More PSD information is needed at smaller particle sizes (i.e., more particle size bins in the nanometer size range).
- Metrologies capable of differentiating the nature of the measured particles are needed...."

Next gen PSD requires: "Sensitivity in the nm range....Smaller bins in the nm range"

The Problem

What happens when mean particle size approaches the limit of resolution?

Improve Process Control and meet Roadmap Challenges: Improve the resolution of fine particles

Nanoparticle Tracking (NTA)

© 2021 HORIBA, Ltd. All rights reserved.

Why three colors?

Number, not volume based distribution.

Particle concentration!

Repeatability

Dilute and run PL-7 15 times

Concentration: 8.48E+13 p/mL CoV (SD/mean): 3.54%

Median Size: 120.93 nm CoV (SD/mean): 1.04%

What is driving repeatability?

Do we follow counting (Poisson Statistics)? Zirconia, run six times as repeats

Error bar is standard deviation of 6 repeats

Yes

Plot standard deviation as a function of number of particles in each bin. Dashed line is sqrt(num particles) and theoretical.

This means

- 1) mixing is correct (random sampling)
- 2) uncertainty can be estimated by looking at particle count.

Volume normalization

Effective volume goes down as particle size goes down.

This is in surmountable...but noise (uncertainty due to fewer particles) is not.

Look to fluorescence to help

Scatter and fluorescence measured orthogonally.

With 3 laser excitation sources, we have many options of fluorophores to selectively identify mixed particles systems. Long pass and short pass filters allow for isolation of fluorescent particles.

Detection limits

in water (n=1.337), laser 445 nm wavelength, polarized, objective NA=0.28, 80°÷100° integration

	Rayleigh Scattering		
$I=I_0\left(rac{1+\cos^2 heta}{2R^2} ight)\left(rac{2\pi}{\lambda} ight)^4\left(rac{n^2-1}{n^2+2} ight)^2\left(rac{d}{2} ight)^6$			
	I	=	scattered intensity
	Theta	=	viewing angle
	R	=	viewing distance
	lamda	=	wavelength of light
	n	=	particle refractive index

particle refractive index = particle diameter =

Rayleigh scattering diminishes quickly ~ d⁶

d

Calculated limit for detecting scatter in silica is ~ 40 nm.

Fluorescent particle emission signal diminishes less rapidly, $\sim d^2$

Enhancing detection limits

combine the scattered signal with fluorescent emission

Test the Concept: A Challenging Colloidal Silica

D2 = 40 nm

With a ~ 40nm mean particle size and a wide range of aggregate sizes, Fuso PL-1 is a good challenge for the resolution of the Viewsizer 3000.

https://fusokk.co.jp/eng/wp/wp-content/uploads/2019/05/5d5d380df5aea451f62d038624cb8cb5.pdf

HORIBA

Scientific

Test the Concept: An Efficient Dye

Cationic dye can interact electrostatically with the negative surface charge colloidal silica

• Very efficient adsorption in the literature

Surface modification of colloidal silica particles using cationic surfactant and the resulting adsorption of dyes *Asad M. Khan* Journal of Molecular Liquids, Volume 274, 15 January 2019

Selective adsorption of organic dyes by porous hydrophilic silica aerogels from aqueous system *Wei Wei* **Water Science & Technology | 78.2 | 2018**

Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material *Ning Yuan* **Adsorption Science & Technology 2019, Vol. 37(3–4) 333–348**

Rhodamine 6G (R6G) λ_{ex} = 530 nm, λ_{em} = 565 nm

Based on Prof. Remsen's results and literature supporting cationic dye adsorption on SiO2, and good fluorescence alignment with our green laser We chose a high purity colloidal silica **and Rhodamine 6G**

Test the Concept: Series of Experiments

Diameter, nm

Optimized Conditions

Series of Experiments

Comparing the calculated limit of scattering detection for the Viewsizer and the enhanced signal of the dyed particles, The improved detection is pronounced at sizes smaller than ~ 65nm.

Illustration of the Experiments

Standard process Fines poorly detected

Dyed and diluted, we can optimize the optical settings to improve detection of fines

Dyed particles increase counts Need dilution to count all particles

Summary of Results

Addition of Rhodamine 6G to Fuso PL-1:

- Consistently increases the counts
- Detection of finer particles upon optimal dilution

CS

More counts->better statistics

Opportunities for follow-up

More efficient dyes

RIBA

- blue and red
- Lot-to-lot (good vs. bad)
- Dyes for other particle types
- Process for complex slurry formulations (interfering additives)

