HORIBA Scientific Particle Characterization

Nanoparticle Characterization Introduction: DLS, Diffraction, and NTA

Jeffrey Bodycomb, Ph.D.

Feb. 17, 2021

Overview of Techniques

- Laser Diffraction
- Dynamic Light Scattering
- Nanoparticle Tracking Analysis and Multiple Lasers

Laser Diffraction

- Converts scattered light to particle size distribution
 - Quick, repeatable
 - Powders, suspensions
 - Most common technique

Path Length Difference

Diffraction effects arise due to scattering from various points in the particle (and, in the large particle limit only the edges)

Interpreting Scattering Data

- Scattering data typically cannot be inverted to find particle shape.
- We use optical models to interpret data and understand our experiments.
- Modern systems use particle refractive index in a 3-D calculation (Mie Theory) that includes behavior of light inside of particles.

Fine particles: silica and latex

Finding large particle impurities

Instrument to instrument variation

4 instruments (real sample)

	Dmean	D5	D10	D50	D90	D95
Average (nm)	155	112	119	152	193	208
Std. Dev. (nm)	0.8	0.8	0.7	1.0	1.1	0.7
CV (%)	0.5	0.7	0.6	0.6	0.6	0.3

Figure 8: Instrument to instrument variation across four LA-950 systems for Formulation 1.

	Dmean	D5	D10	D50	D90	D95
Average (nm)	193	136	147	187	247	264
Std. Dev (nm)	1.5	0.5	0.4	0.6	0.4	1.1
CV (%)	0.8	0.4	0.3	0.3	0.2	0.4

Figure 9: Instrument to instrument variation across four LA-950 systems for Formulation 2.

DLS (Dynamic Light Scattering)

Use scattering as a function of time to determine size and size distribution

Particles moving due to Brownian motion

Brownian Motion

Particles in suspension undergo Brownian motion (random thermal motion).

- Brownian Motion
 - Random
 - Related to Size
 - Related to viscosity
 - Related to temperature

Hydrodynamic Diameter

 D_m diffusion coefficient D_h hydrodynamic diameter η viscosity k_B Boltzman's constant

What is Hydrodynamic Size?

DLS gives the diameter of a sphere that moves (diffuses) the same way as your sample.

Lab to Lab comparison

Colloidal Silica

	Mean determined Z-average size (nm)	COV (%)
Dynamic Light Scattering with SZ-100, laboratory 1	34.4	0.7
Dynamic Light Scattering with SZ-100, laboratory 2	34.6	0.3

Effect of salt on measured size of silica

- Note that when we suppress effect of charges by adding salt, the effect of concentration is suppressed.
- Concentration effects are due to changes in particle motion, not just multiple scattering.

Nanoparticle Tracking (NTA)

Problem: Intensity vs size

450 nm laser on polystyrene beads

Solution: Intensity vs size

450 nm laser on polystyrene beads

© 2021 HORIBA, Ltd. All rights reserved.

Why three colors?

Number, not volume based distribution.

Particle concentration!

Key benefits of ViewSizer

- Individual particle method, not ensemble average
- Accurate PSD for polydisperse samples
- Concentration measured, not estimated
- Absolute method (no calibration needed)
- Particle visualization

Closing Comparison

Issue	Laser Diffraction	DLS	Multi-laser nanoparticle tracking
Large (>1 micron) particles in sample that need to be analyzed	++		-
Small quantity of sample	-	+	+
Smallest particles (<10~50 nm)	-	++	-
Speed	++	+	-
Nanoparticle Distribution	-	-	+
Analyze only tagged particles			+
Nanoparticle Concentration			+

