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Introduction 
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• “Soft Pad” conditioning has become more critical 
• Conditioning of poromeric pads has become more important 

• Poromeric materials (Fujibo H800, DuPont OVP9500) have a vertically oriented pore structure and 
performance is tied to pad thickness 

• Conditioning of impregnated felt (Type 1 or “Suba-like”) pads is becoming 
important in emerging substrate applications 

• The modeling and analysis tools developed for Type 3 and 4 pads can be 
readily applied to Type 1 pads 

• The core roughness of Type 1 pads can be driven across a wide range with 
pad conditioning 

• Pad analysis reveals changes in the pad surface structure associated with 
polishing indicating that more robust conditioning protocols could improve 
performance in Type 1 pad applications 

 

 
 
 
 



CMP Pad Types 
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Type I Type II Type III Type IV 

• Polymer impregnated felt 
• Examples: Suba IV, 400, 800 
• Not typically used in CMP, 

except as a subpad 
• Stock polishing, SiC 

polishing 
• “Soft”  

• Poromeric 
• Examples: Politex, Fujibo 

H800, DPM/SPM 3100, 
OVP9500 

• Vertical pore structure 
• Also used as a subpad 
• “Soft” 

• Filled polymer sheets 
• Examples: IC1000, D100, 

VP5000, IK4250, etc. 
• “Uniform” pore structure 

in all directions 
• “Hard” 

• Unfilled polymer sheets 
• Examples: OXP3000/4000, 

TWI 
• Solid, no intrinsic porosity 
• “Hard” 

After D.B. James in, Chemical-Mechanical Planarization 
of Semiconductor Materials, M. R. Oliver (ed.) 2004 



• Pad texture is typically measured via Laser Confocal Microscopy or Vertical Scanning 
Interferometry 

• The pad surface height probability distribution function (pdf) describes how the pad 
surface is distributed in vertical space 

• The most positive side is in contact with the pad, the most negative side represents 
the lowest visible pores 

Pad Surface Statistics 
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Adapted from: A.S. Lawing, Topics in Plasma Science and Thin Film Applications III - in 
Honor of Herbert H. Sawin, AIChE Conference, Philadelphia, November 17, 2008 



• Accurate determination of the 
porosity distribution can 
provide the basis for 
specification of “compatible” 
conditioning protocols 

• The characteristic decay length 
of the exponential (τ) can be 
compared to the half height 
half width of the Gaussian 
mode 
• If the Gaussian mode (i.e. the 

characteristic depth of the 
conditioner cut) is too wide it will 
effectively “swamp out” the 
intrinsic porosity distribution of 
the pad 

Pad Intrinsic Porosity 
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Slide courtesy of Dow (now DuPont Electronics and Imaging) 



Conditioning Induced Roughness 
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Adapted from A.S. Lawing NCCAVS CMPUG, May 2004. 
Available online at: https://nccavs-usergroups.avs.org 

Conditioned Solid Pad Surface 

Cut Roughness 

• In the absence of “built in” porosity, the conditioner alone determines pad surface texture 

• Conditioner design variables determine the nature of the individual furrows which build up to form the pad texture 

• This example shows three different conditioner designs which impart a dramatically different surface roughness to a 
solid pad 

• A Gaussian distribution is typically an excellent model for the conditioning imposed roughness  

https://nccavs-usergroups.avs.org/
https://nccavs-usergroups.avs.org/
https://nccavs-usergroups.avs.org/


Pad Surface Texture 
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• Final pad surface is the product of the inherent pad texture (porosity) and the 
conditioner cutting characteristic (near surface roughness) 

• Each pad-conditioner combination will have a unique (intrinsic) surface 
structure 

• Cut rate, cutting characteristics and the resulting near surface roughness can be 
driven over a large range through conditioner design 

Topics in Plasma Science and Thin Film Applications III  
-in Honor of Herbert H. Sawin :  AS Lawing Nov 2008  



Modeling Pad Height Distributions 
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Good EMG Fit Poor EMG Fit 

* 

* 

EMG definition: 

• Exponentially Modified Gaussian  
• The EMG is a mathematical 

convolution of an exponential with a 
Gaussian – basically a Gaussian “front” 
with an exponential “tail” 

• The exponential parameter of the EMG 
is equivalent to an independently 
derived exponential slope 

• The EMG Gaussian parameter is not 
exactly equal to the σ of an 
independent Gaussian except at very 
low values of τ 

• EMG was developed for 
chromatography but provides an 
excellent description in cases where 
there is a smooth transition between 
the E and G components 

• De-coupled Exponential/Gaussian 
• The de-coupled model treats each 

component independently, providing 
greater flexibility 



Modeling Pad Height Distributions 
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• In this example, both the EMG and the decoupled model provide apparently robust fits, but a detailed analysis 
reveals that the EMG model doesn’t capture critical detail in the porosity signature 

 

Increasing Gaussian 
Roughness 

98+% captured 
by EMG 

Increasing disconnect 
between E and G 

components 

EMG significantly 
overestimates τ 

See also: Lawing, Pad and Conditioner 
Integration in CMP, ICPT 2019 



Asperity Truncation (Glazing) 
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• Pad surface asperities become truncated under polishing stress in the presence of aggressive slurry chemistry and abrasive particles 

• On Type 3 and 4 pads, asperity truncation can be modeled as an additional Gaussian mode in the height distribution 

• Changes in the pad surface lead to changes in pad wafer contact and changes in polish performance 

• In addition to setting the asperity structure, a key role of pad conditioning is to maintain the structure through the removal of 
truncated material and re-establishment of the intrinsic texture 
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Type 1 (“Suba”) Impregnated Felt Pads 
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• Type 1 pads consist of non-woven (needled) 
polyester fibers impregnated with polyurethane 

• Pad properties depend on fiber variables (type, 
thickness) and impregnation (type, number of 
impregnations) 

• Type 1 pads are typically buffed to impose an 
initial texture 

 
 
 

Images available online at: 
http://www.anchor-t.co.jp/article/15065811.html 
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf 

Suba 400 

Suba 800 

Suba 400 Suba 600 Suba 800 

http://www.anchor-t.co.jp/article/15065811.html
http://www.anchor-t.co.jp/article/15065811.html
http://www.anchor-t.co.jp/article/15065811.html
http://www.anchor-t.co.jp/article/15065811.html
http://www.anchor-t.co.jp/article/15065811.html
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf


Model For Suba Type Pads 
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• The new pad surface exhibits a Gaussian core with an 
exponential describing both the porosity and the pad 
near surface 

• The exponential porosity component is typically 
consistent within a given material type 

• The Gaussian core is dependent on the pad surface 
treatment (buffing, conditioning) and the effects of 
the polishing process 
• The Gaussian Core accounts for the majority of the 

measured surface on a new Suba pad 
• We have measured the Gaussian core roughness for new 

Suba 800 from about 15 to 28 µm 

• Measurements of Suba 400 reveal differences in both 
the native porosity and the buffing treatment 
between these materials 

Suba 800 

Ghwhm ≈ 15 µm 
AG ≈ 60% 

τ ≈ -40-45 µm 



Length Scales Compared to Type 3 Pads 
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• Type 3 pads typically exhibit exponential decay constants in 
the range of 10 µm or less, and most typically between 
about 2.5 – 7 µm 

• Type 1 pads exhibit exponential decay constants of 40 - 75 
µm 
 

• The same range of pad conditioner designs that develop 
Gaussian core roughness of 2 - 7 µm on a Type 3 pad will 
contribute to 10-30 µm core roughness on a Type 1 pad 
 

• The length scales of interest on a Type 1 pad are almost an 
order of magnitude larger compared to Type 3 pads 
 

 
 
 

Images available online at: 
http://www.anchor-t.co.jp/article/15065811.html 
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf 
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https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf
https://www.nittadupont.co.jp/en/wp-content/uploads/sites/3/2014/07/2a3ffc2acd25bf43ebdf222e317f64b11.pdf


• A range of conditioner designs were selected to test in the HCR 
cut rate tester on Suba 800 
• Large, Medium and Fine diamond discs in the range of 50 ~ 350 µm 

• CVD-W 

• Bristle Brush 

 

 

Suba 800 Pad Conditioning Matrix 
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Conventional Diamonds 

CVD-W 

Brush 

• The diamond conditioners screened all 
exhibited similar cut rates 

• The brush and CVD-W conditioners exhibited 
cut rate below the measureable threshold 
 

 

 



Pad Height Data from Conditioning Matrix 
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Mean at Zero X-scale Normalized to Porosity • Pad height distributions can be split into 3 
broad groups 

• Pads with no cut rate 
• Pads with cut rate 

• Pads with a primarily Gaussian texture 

• Pads with a “balanced” texture 

• Pads with no cut rate have a deeper pore 
structure (≈ 50 µm) 

• Gaussian core roughness can be driven 
across a wide range, incorporating the 
typical as received roughness and 
expanding the potential roughness space 

• The exponential porosity signature of the 
pad is very consistent but on conditioned 
pads represents < 5% of the total 
distribution 

• Many of the conditioned pads exhibit a 
kind of “stretched” or “distorted” core 
structure 

• Possibly an artifact of the HCR tester? 

 
 

≈50 µm 

Exponential porosity 
from combined new 
pad data set 
(τ = -43.41 µm) 

With cut rate 
No cut 

rate 

CVD-W 
 
 

New Pad 

Legend indicates 
Gaussian core hwhm 



Example Pad Height Distributions 

16 

Gaussian 
Dominated 
 

• Diamond conditioning can drive pad roughness over a wide range 
• The Gaussian core dominates the distribution at higher 
• A CVD-W treatment imparts a smoother near surface while exhibiting minimal cut rate 

Balanced 
“No” CR 
(CVD-W) 

Balanced 
With CR 

Ghwhm ≈ 25 µm 
AG ≈ 90% 

Ghwhm ≈ 15 µm 
AG ≈ 55% 

Ghwhm ≈ 10 µm 
AG ≈ 50% 



Brush vs. Diamond Conditioning 
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• The brush conditioned surface 
is nearly identical to the new 
pad surface 

• Measured Cut Rate is 
negligible with a brush 

• A diamond conditioned pad 
with similar core roughness 
exhibits a shallower pore 
structure (but with the same 
decay constant) and a relative 
shift in the position of the 
Gaussian core 

• This implies that a brush is not 
capable of establishing or 
regenerating pad surface 
texture 

Mean at Zero X-scale Normalized to Porosity 



Suba 800 Conditioning Response 
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Texture Correlations with Diamond Design Parameter 

DiaGrid 

NSPD 

• For conditioned pads, multiple defining 
textural parameters are strongly 
correlated with a basic design parameter, 
indicating a well-behaved and predictable 
conditioning design space, as well as the 
ability to drive texture over a wide range 

• Kinik DiaGrid conditioner designs widely 
used in semiconductor CMP applications 
cover the typical range of core roughness 

• We are actively expanding this range with 
product improvements 

• Kinik NSPD conditioners develop 
smoother textures 

• CVD-W designs can impart lower 
roughness with low  or negligible cut rate 

 

 

Diamond Design Parameter 



Polishing Effects on Type 1 Pads 
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• Surface signatures that look like asperity truncation can be seen on Type 1 surfaces, but they are 
difficult to quantify 
• The same pad area may show a distinct doublet that gets “washed out” when sampling a larger area 

• Note the noisier response in the roughly 4x smaller sampling area with the 10x objective 
 

 

Used Suba 800 - 10x Objective Used Suba 800 - 5x Objective 



Polishing Effects on Type 1 Pads 
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• Surface signatures like this are more common, where there is clearly deformation 
(note the substantially higher amplitude in the used pad probability density) and 
the best fit represents a superposition of two Gaussian modes (one of which is 
similar to the new pad core roughness), but without a clear doublet or shoulder 

• Flattened looking surface structures are typically observed in SEM images, 
accompanying the distortions in the surface statistics 

 
 

 

 

New Suba 800 Pad Used  
Suba 800 

Pad 



Summary 
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• Type 1 pad texture follows similar Exponential-Gaussian statistics to Type 3 pads 
• The porosity of Type 1 pads can be modeled as an exponential 

• The signature (decay constant) of the exponential is a function of fiber/impregnation 

• Less impregnated pads have a deeper pore structure 

• A Gaussian core component can be superimposed on the native porosity 
• With conditioning, core texture can be driven across a range that includes the core roughness of new pads 

• A secondary Exponential component is generally seen at the near surface 
• Core roughness of new pads varies based on buffing treatment 
• Glazing phenomena have been observed 

• Textures significantly smoother than new pads can be obtained with or without 
significant cut rate 

• Pad surface analysis of used pads indicates an opportunity for improved conditioning 
protocols in the processes utilizing these pad types 
• Used pads inevitably have the majority of their thickness remaining 

• The ability to engineer surface texture through pad conditioning as not been widely 
investigated on these pads and may provide significant process leverage 

 
 
 
 


