Computational modeling of CMP pads: a die-scale model incorporating measured surface roughness

Brian Salazar* and Hayden Taylor University of California, Berkeley

Ashwin Chockalingam, Shiyan Jayanath, and Rajeev Bajaj Applied Materials, Inc.

September 1, 2020 NCCAVS - CMPUG Fall Meeting: Advancements in CMP Applications and Research

*brian10salazar@berkeley.edu

Outline

- 1. Introduction
 - Background, motivation, and research objective
- 2. Computational modeling
 - Die-scale modeling
 - Feature-scale modeling
 - Incorporating the role of pad surface asperities
- 3. Results
- 4. Conclusion

I parametrize the pad with 6 geometric and 3 mechanical parameters

Introduction

CMP modeling is required at multiple scales

Goal: predict oxide thickness vs time for a given pad design

Error bars: Experiments

Introduction

Lines: Simulations

Hypothesis: CMP can be modeled using a contact wear approach that accounts for both bulk and surface pad deformation

We'll focus on the die that is at the very center of the wafer

Pad segments rotate and horizontally translate across the die

Pad platen: 93 rpm Wafer platen: 87 rpm Wafer center sweeps from 7.5" to 8.5" away from pad center

We use a Solarius confocal microscope to 3D scan large areas of the pad surface

• Solarius allows for scanning large areas with a 25 μm resolution

[1] Brian Salazar, et al., "Die-scale modeling of planarization efficiency using segmented CMP pads: analyzing the effects of asperity topography" presented at the International Conference on Planariza- tion/CMP Technology (ICPT), Hsinchu, Taiwan, September 2019.

We use a 3D laser scanning confocal microscope to scan small portions of the pad surface at high resolution (~2.5 μ m)

[2] Brian Salazar and Hayden Taylor, "Computational modeling of segmented CMP pads; incorporating the effects of asperity topography" presented at the 22nd International Symposium on Chemical-Mechanical Planarization (CMP), Lake Placid, NY, August 2018.

Sub-pixel behavior (die-scale model is run at 50 µm pixel size)

Features $< 2.5 \,\mu m$

The PDSH model is effectively dictating a PE vs SH profile (for the small features)

For small features, λ is likely to be the dominant parameter (over bulk parameters)

[4] Xie, X. (2007). Physical Understanding and Modeling of Chemical Mechanical Planarization in Dielectric Materials. Massachusetts Institute of Technology.

Features > 2.5 μ m and < 50 μ m

Compute the solid-solid contact pressure distribution between pad segments and wafer features at all possible configurations

[5] Brian Salazar and Hayden Taylor, "Computational modeling of segmented CMP pads; incorporating the effects of asperity topography" presented at the 22nd International Symposium on Chemical-Mechanical Planarization (CMP), Lake Placid, NY, August 2018

Computational modeling - Feature scale

Features > 2.5 μ m and < 50 μ m

We sweep the feature topography across the pad, to allow for all contact situations

•Average pressure distribution over all possible relative positions

We simulate ten possible relative angle between features and segments

Rotationally symmetric pad

Average the pressure calculations over all ten simulated relative angles Features > 2.5 μ m and < 50 μ m

We are interested in the planarization efficiency for various feature sizes, and step heights

Small Features

Large Features

Run contact simulations for features much smaller to bigger than the segment size

Computational modeling - Feature scale

Simulated contact pressure distribution: contacts are sparse, with <0.4% of locations having non-zero pressure

Features > 2.5 μ m and < 50 μ m

Probing the pressure distribution at the trench and active allows us to calculate PE, assuming the material is Prestonian

Assume the slurry + system is Prestonian

$$MRR = Kvp$$

Computational modeling - Feature scale

Simulations show smaller step heights experience lower planarization efficiency

Results - Feature scale

Simulated die topographies show the oxide becomes more planar as the polish continues

50 s polish

Results - die scale

20

Simulations show reasonable agreement with experiments

Error bars: Experiments

Results

Lines: Simulations

The model captures pad surface roughness effects

[6] Brian Salazar, Mayu Yamamura, Raghava Kakireddy, Shiyan Jayanth, Ashwin Chockalingam, Rajeev Bajaj, and Hayden Taylor, "Die-scale modeling of planarization efficiency using segmented CMP pads: analyzing the effects of asperity topography" presented at the International Conference on Planarization/CMP Technology (ICPT), Hsinchu, Taiwan, September 2019.

Results

We'll check sensitivity to the pattern design by varying the pattern density of the features directly to the right of the 200 µm checkerboards

The model is sensitive to the pattern density of neighboring features; we see differences of ~300 Å between the two extreme cases

Results

The model accurately predicts that rings with larger widths have higher planarization efficiencies

Pads with larger ring widths have smaller within-die active oxide thickness ranges

Polish time is when the average active oxide thickness across the die is 100 Å

Results

Conclusion and Contributions

- The die-scale contact wear model is able to capture trends in the removal rate as the die design is altered
- The neighborhood effect distance (planarization length) seems to be only a few millimeters, and is set by the asperity topography
- This is the only die-scale model that incorporates large, measured pad scans