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I parametrize the pad with 6 geometric and 3 
mechanical parameters
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Introduction

ƛ
Parameter Range

E1 500 - 5000MPa

E2 1 - 100MPa

w 0.25 - 3 mm

s 0.25 - 3 mm

h 0.25 - 1 mm

t 0.25 - 2 mm

b 0.5 - 2.5 mm

ƛ 10 - 100 µm



Feature shape, 
width, and height

Feature Scale Die Scale Wafer Scale

Pattern density

Neighboring effects Edge effects
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Pad Name: Pad340 Pad680
ring width 

(w) 0.34 mm 0.68 mm
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Introduction

CMP modeling is required at multiple scales



Goal: predict oxide thickness vs time for a 
given pad design
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*error bars represent 95% confidence intervals on the mean
Lines: Simulations
Error bars: Experiments



Hypothesis: CMP can be modeled using a contact wear approach 
that accounts for both bulk and surface pad deformation
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Start with initial topography

Place into contact with segmented pad

Remove material

Calculate 
outputs

Has the total polish 
time elapsed?

Rotate/sweep system

0 s polish
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No
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We’ll focus on the die that is at the very 
center of the wafer
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0 s 0.432 s

area of interest

Computational modeling



Pad segments rotate and horizontally translate 
across the die
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Pad platen: 93 rpm 
Wafer platen: 87 rpm 

Wafer center sweeps from 7.5” to 8.5” away from pad center

Computational modeling

t = t0 t = t1 t = t2

t = t3 t = t4 t = t5



We use a Solarius confocal microscope to 3D 
scan large areas of the pad surface

• Solarius allows for scanning large areas with a 25 μm resolution

 9

40 mm

40 mm

Computational modeling

0

20

40

60

80

As
pe

rit
y 

to
po

gr
ap

hy
 (m

ic
ro

ns
)

Top view Cross section

1.35 mm

[1] Brian Salazar, et al., ”Die-scale modeling of planarization efficiency using segmented CMP pads: analyzing the effects of asperity topography” presented at the International 
Conference on Planariza- tion/CMP Technology (ICPT), Hsinchu, Taiwan, September 2019. 



We use a 3D laser scanning confocal microscope 
to scan small portions of the pad surface at high 

resolution (~2.5 µm)
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Computational modeling

[2] Brian Salazar and Hayden Taylor, ”Computational modeling of segmented CMP pads; incorporating the effects of asperity topography” presented at the 22nd International 
Symposium on Chemical-Mechanical Planarization (CMP), Lake Placid, NY, August 2018. 



Sub-pixel behavior (die-scale model is run at 
50 μm pixel size)

Feature Size
> 100 μm< 100 μm

< 2.5 μm > 2.5 μm

Compare with 
Keyence resolution Use PE as calculated 

with the die-scale model

Use PE as calculated 
with the feature-scale 

model

Use pattern-density step 
height model

!11Computational modeling



The PDSH model is effectively dictating a PE 
vs SH profile (for the small features)
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For small features, λ is likely to be the dominant parameter (over bulk parameters)
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Features < 2.5 μm 

Computational modeling

[4] Xie, X. (2007). Physical Understanding and Modeling of Chemical Mechanical Planarization in Dielectric Materials. Massachusetts Institute of Technology.

Pactive =
P(x, y)

1 + (ρ − 1)PE

Ptrench =
(1 − PE)P(x, y)
1 + (ρ − 1)PE

PE = 1 − exp (−
h
λ )



Compute the solid-solid contact pressure 
distribution between pad segments and wafer 

features at all possible configurations
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Computational modeling - Feature scale

[5] Brian Salazar and Hayden Taylor, ”Computational modeling of segmented CMP pads; incorporating the effects of asperity topography” presented at the 22nd International Symposium 
on Chemical-Mechanical Planarization (CMP), Lake Placid, NY, August 2018 

Features > 2.5 μm and < 50 μm 

Line/space 
features



We sweep the feature topography across the 
pad, to allow for all contact situations

Sweep the feature relative positions across a segment 
•Average pressure distribution over all possible relative positions  
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Features > 2.5 μm and < 50 μm 

Features on wafer

Pad asperities



θ=0° θ=30° θ=60° θ=90°

Rotationally 
symmetric 

pad

We simulate ten possible relative angle between 
features and segments

Average the 
pressure 

calculations 
over all ten 
simulated 

relative angles
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We are interested in the planarization efficiency 
for various feature sizes, and step heights

Small Features Large Features
Run contact simulations for features much smaller to bigger than the 

segment size
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Features > 2.5 μm and < 50 μm 
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Simulated contact pressure distribution: 
contacts are sparse, with <0.4% of locations 

having non-zero pressure
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Computational modeling - Feature scale



MRR = Kvp

Probing the pressure distribution at the 
trench and active allows us to calculate PE, 

assuming the material is Prestonian

• Assume the slurry + system is Prestonian
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Features > 2.5 μm and < 50 μm 

PE = 1 −
MRRtrench
MRRactive

= 1 −
Ptrench
Pactive



Simulations show smaller step heights 
experience lower planarization efficiency
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200 μm CB

500 μm CB

Simulations

Results - Feature scale
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Simulated die topographies show the oxide 
becomes more planar as the polish continues

Results - die scale



Simulations show reasonable agreement 
with experiments
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*error bars represent 95% confidence intervals on the mean
Lines: Simulations
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The model captures pad surface roughness effects

λ=0 Å λ=500 Å λ=2000 Å

Results
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Top view

Cross-sectional views
[6] Brian Salazar, Mayu Yamamura, Raghava Kakireddy, Shiyan Jayanth, Ashwin Chockalingam, Rajeev Bajaj, and Hayden Taylor, ”Die-scale modeling of planarization efficiency using 
segmented CMP pads: analyzing the effects of asperity topography” presented at the International Conference on Planarization/CMP Technology (ICPT), Hsinchu, Taiwan, September 2019. 
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We’ll check sensitivity to the pattern design by 
varying the pattern density of the features directly to 

the right of the 200 μm checkerboards
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The model is sensitive to the pattern density of neighboring features; 
we see differences of ~300 Å between the two extreme cases
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The model accurately predicts that rings with larger 
widths have higher planarization efficiencies
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Pads with larger ring widths have smaller within-die 
active oxide thickness ranges
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Conclusion and Contributions

• The die-scale contact wear model is able to 
capture trends in the removal rate as the die design 
is altered 

• The neighborhood effect distance (planarization 
length) seems to be only a few millimeters, and is 
set by the asperity topography 

• This is the only die-scale model that incorporates 
large, measured pad scans
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